

CWG Workshop, 17-19 April 2018, Ljubljana, Slovenia

Humberto A. Barbosa

LABORATÓRIO DE ANÁLISE E PROCESSAMENTO DE IMAGENS DE SATÉLITES

Canal:

The African Easterly Waves and their influence on hurricane activity in the tropical North Atlantic: An assessment of hurricane Bill (2009) using SEVIRI data

Synoptic-scale weather forcing → Cyclones, cold fronts, warm / cold air advection etc Other organized mesoscale weather→ Sea-breeze convergence, Low-level jet streaks, MCSs

MOTIVATION

Conceptual Models - the online collection Conceptual Models for Southern Hemisphere is a joint project between four southern hemispheric Centres of Excellence: Argentina, Australia, Brazil and South Africa. The project is co-funded by WMO and EUMETSAT. The purpose of the project is to improve warnings and awareness of weather risks through the use of conceptual models.

Conceptual Models for Southern Hemisphere

ARGENTINA SALLJ & MCSs ZONDA AUSTRALIA RAPID CYCLOGENESIS SHALLOW COLD FRONTS BRAZIL ATLANTIC CONVERGENCE ZONE

MESOSCALE CONVECTIVE COMPLEXES

COL

CONTINENTAL TROPICAL LOWS ALL CATEGORIES CONTRIBUTORS

https://sites.google.com/site/cmsforsh/

Search this site

Conceptual Models - the online collection

Conceptual Models for Southern Hemisphere is a joint project between four southern hemispheric Centres of Excellence: Argentina, Australia, Brazil and South Africa. The project is co-funded by WMO and EUMETSAT.

The purpose of the project is to improve warnings and awareness of weather risks through the use of conceptual models.

Necessary environmental conditions for tropical cyclone formation

- 1. SST > 27 °C
- 2. Warm ocean mixed layer is thick enough to supply energy (this is why they weaken quickly upon landfall)
- **3.** Unstable atmosphere with a moist lower/middle troposphere (central and western ocean basins)
- 4. Low vertical windshear (Otherwise upward transfer of latent heat disrupted)
- 5. Coriolis force (do not form between 5N-5S where Coriolis force is too weak)
- 6. Pre-existing low-level rotating circulations (tropical waves and other disturbances)

Deep Warm Currents and Eddies:

- A shallow oceanic mixed layer can easily be eroded by TC induced upwelling of cold water, resulting in cold SSTs and and the potential weakening of the TC
- A deep oceanic mixed layer will experience less upwelling of cold water, resulting in higher SSTs, and a better chance for intensification

Deep warm water matters, not just SST

TC Genesis

Favorable Wind Shear Pattern:

• Wind shear is often defined as the vector difference between winds at two altitudes (850 and 200 mb)

African Easterly Jet (AEJ)

Origin: Develop over sub-Saharan Africa from instabilities along the African Easterly Jet

Basics:

- Wavelengths of ~3000 km
- Move westward at 6-8 m/s
- 60-80 easterly waves cross the Atlantic

each year between June and October

 7-9 develop into tropical cyclones

http://www.lapismet.com/ 60°0'0"W 45°0'0"W 30°0'0"W 15°0'0"W 0°0'0" 15°0'0"E 30°0'0"E N"0'0°0E 30.01 **MSG IR10.8** Aug 18th, 2009 5°0'0"N N..0.0.91 1200 UTC From .0.0.0 **EUMETCast** station at LAPIS

60° 0' 0''W45° 0' 0''W30° 0' 0''W15° 0' 0''W0° 0' 0''15° 0' 0''E30° 0' 0''EData through the system of low cost for receiving environmental data- the EUMETCast system

19 August 2009 / 06UTC. Meteosat-9 IR images of the Hurricane Bill. A) IR imagery and B) Enhanced IR imagery.

Eye mesovortices (distinct cyclonic and anti-cyclonic features in the low-level clouds) generate buoyant convection in the eyewall by ejecting the warm, moist air from the low-level eye and producing enhanced convergence at the eyewall cloud base. These features can usually be seen clearly in the visible, infrared and water vapour images.

3-D view of Bill (2009)

Eye Mesovortices

19 August 2009 / 00:00 UTC. Meteosat-9 Enhanced IR 10.8 image for Hurricane Bill

Mesoscale Convective Vortices (MCVs)

Origin: Develop within persistent mesoscale convection from heating aloft (convection) and cooling below (cold downdrafts)

Basics:

- Confined to mid-levels with little or no signature at the surface
- Often present in easterly waves
- Dynamically stable (last several days)
- Multiple convective cycles
- Can emerge from the continental U.S. and developed into tropical cyclones (e.g. Hurricane Danny 1997)

Why do we care about MCVs?

- Often emerge over warm waters with convection
- Systems "pre-conditioned" for successful genesis

SEVIRI IR 10.8 image

SEVIRI Image

IR 10.8 + wind 250

Observational Evidence:

TC Aug 18th, 2009

Vertically sheared from the northeast

- Exposed low-level circulation
- Convection confined to the southwest

Episodic convective bursts (hot towers)

developed multiple low-level vortices that

rotated around to the northeast

Source: Lapis

IR 10.8 enhanced

Convective Bursts:

• Overshooting and diverging convection at upper levels drives asymmetric mesoscale descent (adiabatic warming) in the eye, which lowers the pressure, increasing the pressure gradient and tangential winds

Source: Lapis

•A recent survey of convective bursts:

- 80% of TCs have at least one "burst"
- 70% of TCs intensify after a "burst"

Conceptual Model of Convective Burst

Intensity change can be a slow and steady process or it can occur rapidly over the course of several hours

Forcing exists on multiple scales

- Seasonal (SST, relative humidity)
- Synoptic (wind shear)
- Mesoscale (convective features, MCV, eyewall cycles)
- Microscales (air-sea interface, water phase changes)

Complex interactions exist between the scales

Very difficult forecast problem!!!

SEVIRI Image

IR 10.8 + wind 250

Observational Evidence:

TC Aug 18th, 2009

Vertically sheared from the northeast

- Exposed low-level circulation
- Convection confined to the southwest

Episodic convective bursts (hot towers)

developed multiple low-level vortices that

rotated around to the northeast

Source: Lapis

IR 10.8 enhanced

Tropical Cyclone Eyewalls

•Convection is rarely organized into a uniform ring of ascent

Individual cells often develop, mature, and decay within 1 hour

•Convection is often organized into multiple distinct "cells" that rotate cyclonically around the eyewall

• Cells are the "detectable result" of strong updrafts Source: Lapis

Vertical cross-section

• Tropical cyclones are "warm core"

• Air near the center of circulation (in the eye) is much warmer than air in the large-scale environment

• Maximum temperature anomalies located in the upper-level eye

• Anomalies result from eye subsidence and eyewall latent heat release

• The warm core is responsible for the extremely low surface pressures in the eye and large pressure gradients across the eyewall

• Warm core is in thermal wind balance with the primary circulation

Tropical Cyclone (TC) Bill (Rain Band)

SUMMARY:

Genesis of TC: The transformation of a "disorganized" cold-core convective system into a self-sustaining synoptic-scale warm-core vortex with a cyclonic circulation at the surface

Necessary (but not sufficient) Conditions:

- Pre-existing convection
- Significant planetary vorticity
- Favorable wind shear pattern
- Moist mid-troposphere
- Warm ocean with deep mixed layer
- Conditionally unstable atmosphere

SEVIRI IR 10.8 image + ECMWF wind data Source: Lapis

How do we transform a cold-core synoptic-scale disturbance with a mid-level vortex to a warm-core system with a surface vortex?

•Easterly Waves

Mesoscale Convective Vortices

References

Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High resolution simulation of Hurricane Bonnie (1998),

J. Atmos. Sci., 63, 19-42

Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991)

to planetary boundary layer parameterizations. Mon. Wea. Rev., 128, 3941-3961.

Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment.

Mon. Wea. Rev., 128, 1550-1561.

Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and

their operational implications. Wea. Forecasting, 18, 32-44.

Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part I: General Observations by research aircraft. J. Atmos. Sci., 41, 1268-1285.

Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner-core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 1287-1311.

Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for prevalence of roll vortices in the hurricane boundary layer., J. Atmos. Sci., 62, 2662-2673.

LAPIS

www.lapismet.com

LABORATÓRIO DE ANÁLISE E PROCESSAMENTO DE IMAGENS DE SATÉLITES

Objetivos Projetos Contatos

Menu Principal

- Home
- Equipe
- Pesquisas
- Publicações
- Softwares
- Contatos

Links

📕 🚔 🛤

2ui, 24 de Setembro de 2009 11:0

Thank you for attention! Questions?

O Laboratório de Análise e Processamento de Imagens de Satélites (LAPIS) da Universidade Federal de Alagoas (UFAL) realiza atividades de pesquisa, assistência tecnológica e treinamento de recursos humanos para a recepção, processamento, interpretação e integração de imagens dos satélites da série METEOSAT. Para atender a essa demanda, em 2007 a UFAL instalou e operacionalizou a terceira estação de recepção de imagens do satélite METEOSAT Segunda Geração (MSG) do Brasil. Como atividades de pesquisa e transferência de conhecimento, a equipe do LAPIS elabora aplicativos para tratamento de imagens, disponibiliza produtos meteorológicos e ambientais derivados do MSG para setores operacionais e oferece treinamento na área. Desenvolvidas inteiramente com ferramentas open-source e freeware.

Instituto de Ciências Atmosféricas – ICAT Universidade Federal de Alagoas – UFAL Campus A. C. Simões, BR 104 Norte Tabuleiro do Martins 57072-970 Maceió, AL – Brasil Fone/Fax: +55 (82) 3214-1376

··· 2006
··· 2007
→ 2008
→ 2009

👩 \Theta Internet