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Abstract
Using nine years (1995–2003) of MOZAIC temperature and humidity data, we analyse

the statistics of instantaneous fluctuations of temperature, relative and absolute humidity

with various spatial resolutions. We determine the probability density functions (p.d.f.s),

their low order moments up to kurtosis, and study how these quantities vary with spatial

resolution and with the background mean relative humidity. Seasonal and geographical

variations are considered. Bivariate distributions of joint fluctuations of temperature and

relative humidity are presented as well. These investigations are thought to provide an

observational basis for the validation of statistical cloud schemes for large–scale models.

For instance, we can show that temperature fluctuations cannot be neglected in such a

scheme and that the bivariate distributions of simultaneous fluctuations of temperature and

humidity have to be taken into account.
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Instantane Fluktuationen von Temperatur und
Feuchte in der oberen Troposphäre und der

Tropopausenregion. Teil 1:
Wahrscheinlichkeitsdichten und deren Variabilität

Zusammenfassung
Instantane Fluktuationen von Temperatur und relativer Feuchte auf verschiedenen räum-

lichen Skalen werden mit Hilfe von MOZAIC Daten aus neun Jahren (1995–2003) un-

tersucht. Wahrscheinlichkeitsdichteverteilungen werden bestimmt, deren Momente bis zur

vierten Ordnung (d.h. Varianz, Schiefe, und Wölbungsmaß), sowie die Abhängigkeit dieser

Größen von der räumlichen Auflösung und der mittleren relativen Feuchte. Saisonale und

geographische Unterschiede werden betrachtet. Bivariate Verteilungen gemeinsamer Fluk-

tuationen von Temperatur und relativer Feuchte werden ebenfalls präsentiert. Diese Unter-

suchung soll die Datengrundlage für Validationszwecke von statistischen Wolkenschemata

für groß–skalige Modelle liefern. Wir zeigen beispielsweise, dass in einem solchen Schema

Temperaturfluktuationen nicht vernachlässigt werden können, und dass man die bivariaten

Verteilungen gleichzeitiger Fluktuationen von Temperatur und Feuchte verwenden muss.

Schlüsselwörter:Fluktuationen; Tropopause; Statistische Modellierung
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1 Introduction

In order to compute cloud formation and coverage, large–scale atmospheric models for weather

prediction or climate simulation generally need to make assumptions on the probability density

function (p.d.f.) of fluctuations of humidity (typically mixing ratio of water in all its phases) and

temperature with respect to their mean values in the grid cells. Models of the current generation

generally use anad hocassumption on the distribution of these fluctuations that is based on the

principle of mathematical simplicity to allow the computation the evolution of the distribution.

However, these distributions are rarely checked against actual fluctuation data, since these are

difficult to obtain.

GIERENSetal. (1997) used one year of MOZAIC data (Measurement of ozone, water vapour,

carbon monoxide and nitrogen oxides by Airbus in–service aircraft, seeMARENCO etal., 1998;

BORTZ etal., 2006) to model a bivariate p.d.f. of simultaneous fluctuations of temperature and

relative humidity in T42 resolution ('300 km). Their objective was to derive a parameterisation

for the fractional coverage of persistent condensation trails (contrails) in large–scale models.

The idea is, that in a certain part of the{T,RHi} phase space, formation and persistence of

contrails is locally possible, but not in the remaining part of the phase space. Thus, the contrail

coverage in a grid cell is that portion of the p.d.f. of the fluctuations that is contained in the

respective part of the phase space. This is also called the overlap integral.

An analogous strategy generally works for cloud formation. While the boundary between

these two parts of the phase space is simply the saturation line for water clouds (i.e.RH over

water equals 100%, independent of temperature), the corresponding boundary for ice clouds

depends both on temperature and relative humidity over ice, and also on the ice–forming ability

of the background aerosol. The threshold of relative humidity for ice formation increases with

decreasing temperature and is generally much higher than 100%. For the prediction of cloud

(both water and ice clouds) and contrail formation it is necessary to consider the bivariate p.d.f.

of common temperature and humidity fluctuations because the relative humidity depends via the

saturation vapour pressure on temperature. Hence, even when the threshold relative humidity is

independent of temperature as for water clouds, temperature fluctuations alone can drive an air

parcel over the cloud formationRH threshold.

MOZAIC data can be used for validation purposes, i.e. fluctuation distributions used in

models can be checked against corresponding data from MOZAIC. One advantage of MOZAIC
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is that we can use many years of data from thousands of flights, ensuring good statistics for our

purpose. We have therefore started to analyse the fluctuations that can be obtained from that data

base. In the following, we present in Sec. 2 the treatment of the MOZAIC data, and describe

the statistical analysis of the scalar fluctuations, their dependence on spatial resolution, and

their seasonal and geographical variation. Some technical and practical issues are discussed in

Sec. 3, and results are summarised in Sec. 4. Further discussions on signs of intermittency (e. g.

SORNETTE, 2004) in the p.d.f.s of the fluctuations and an apparent analogy of the MOZAIC

p.d.f.s to small–scale turbulent Rayleigh–Bénard convection p.d.f.s. will be provided by Part 2

of our analysis (DOTZEK etal., 2006).

2 Statistical analyses of fluctuations

2.1 MOZAIC data

Within the MOZAIC programme the large scale distribution of water vapour is measured since

August 1994 on board of five Airbus A340 aircraft during scheduled flights operated by civil

airlines (MARENCO etal., 1998). The compact airborne sensing device used in MOZAIC for

the measurement of relative humidity (capacitive sensor) and temperature (PT100–sensor) is

described byHELTEN etal. (1998). The sensors are calibrated in the laboratory before and after

500 hours of flight operation. From the regular pre– and post flight calibration of each flown

sensor typical 2σ–uncertainties of±(5 − 10)% relative humidity between 9 and 12 km alti-

tude were derived (HELTEN etal., 1998). The in–flight performance of the MOZAIC–humidity

device had been assessed by inter-comparison with reference instrumentation during dedicated

aircraft missions (HELTEN etal., 1998, 1999) and confirmed the results yielded from pre– and

post calibrations. The dynamical response time of the humidity sensor is about 1–2 minutes

such that, at an aircraft speed of 250 m/s, the horizontal resolution is about 15–30 km while

the vertical resolution is about 250–500 m. The temperature can be measured with an accuracy

(systematic, but unknown error component) of about±(0.5 − 0.7) K and a precision (random

error) better than±(0.1 − 0.2) K (HELTEN etal., 1998). Although the raw data are sampled

every 4 s, the inertia of the humidity sensor makes it necessary to use the coarser resolution

of ∆t = 1 min which corresponds to∆x ≈ 15 km spatial resolution. Fluctuations on scales

smaller than a few times 15 km cannot be resolved.
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We use MOZAIC temperature and humidity data from the pressure range 175–275 hPa gath-

ered during nine complete years (1995–2003). Data with quality–control label “3” indicating

doubtful quality have been discarded from the analysis. Hence, only records with reliable hu-

midity value or indicating “too dry” for the sensor are retained for the analysis. In the selected

pressure range the aircraft are in cruise, that is, the data come from quasi–stationary flight con-

ditions and are essentially horizontally sampled (exceptions occur occasionally when aircraft

change flight level).

Given the MOZAIC resolution∆x for the scalar fluctuations for temperature (δT ), water

vapour pressure (δe), and relative humidity over ice (δRHi), statistical quantities of the data

series can be computed. We use here the same procedure as ofGIERENSetal. (1997) to compute

the fluctuations. First, the globe is covered with a grid that is used also in large–scale models,

here a Gaussian grid for spherical harmonics with triangular cut–off. If a flight path is long

enough within one grid box (more than 8 min) we take all the measurements within that grid

box, compute their average and the single deviations from that average. The latter are the

instantaneous fluctuations of the respective quantity. They are collected for every flight and

every grid box wherein the flight path allows a sufficient number of observations.

For the statistical description we use the first four moments of the distributions of the fluctu-

ations. The mean value (the first moment) vanishes by definition, so all moments are automati-

cally central moments. The second to fourth central moments (standard deviationσ, skewness

S and kurtosisW ) of a discrete scalar quantityξ measured at timestn or locationsxn are

conventionally defined as follows:

σ2(ξ1, . . . , ξN) =
1

N − 1

N∑
n=1

ξ2
n , (1)

S(ξ1, . . . , ξN) =
1

N

N∑
n=1

(
ξn

σ

)3

, (2)

W (ξ1, . . . , ξN) =

[
1

N

N∑
n=1

(
ξn

σ

)4
]
− 3 . (3)

In the following we describe the shape of the p.d.f.s often as concave or convex. For clarifi-

cation: convex means that the function either increases more steeply than linearly or decreases

less steeply than linearly (in other words, its second derivative is positive); for a concave shape

it is vice versa.
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The p.d.f.s are generally shown as histograms. For their construction we have binned fluc-

tuations of relative humidity in classes 0.5% wide, those of vapour partial pressure in 0.1 Pa

classes, and those of temperature in classes of 0.1 K width.

2.2 Distributions of δT , δe, and δRHi in T42 resolution

We first consider distributions of temperature, moisture, and relative humidity fluctuations in

T42 resolution. In T42 the globe is divided into 128×64 (longitude× latitude) grid boxes,

that is, on the equator the spatial scale is about 300×300 km2. We show all distributions in

semi–logarithmic coordinates in order to make the distribution tails more discernible.

Fig. 1a shows the distribution of instantaneous fluctuations of temperature,δT , in two layers

in the tropopause region, from 275 to 225 hPa and from 225 to 175 hPa, corresponding to the

approximate altitude levelsz = 9.8 to 11 km and 11 to 12.5 km, respectively. There are two

remarkable features in these distributions: First, they are peaked at their mean value (δT = 0)

and second, they are by no means Gaussian. Instead, the distribution tails conform better to

exponentials (so–called Laplace distributions). However, there is a slight tendency of an S–

shape on both tails of the distributions (i.e. concave–convex on the lower tail, and convex–

concave on the upper tail). In the following, we will call this an ogival shape1, not to be confused

here with the frequent use of the word ogive for the cumulative distribution function (c.d.f.).

The distribution of the fluctuations of water vapour partial pressure,δe, is shown in Fig. 1b

for the two pressure ranges,275 ≥ p ≥ 225 hPa and225 ≥ p ≥ 175 hPa. These distributions

are sharply peaked at their mean value, even more than the fluctuations of temperature. They

are neither Gaussian nor exponential, nor do they have an ogival shape. Instead, both tails are

convex.

We have also evaluated the relative fluctuationsδe/e, in view of the exponential profile of

water vapour concentration in the atmosphere (not shown). Apart from the cut–off at−1, the

distribution displays the same features as those of the absolute fluctuations ofe, viz. sharply

peaked at zero fluctuation, non–Gaussian shape, and convex tails.

The distribution of fluctuations of relative humidity with respect to ice,δRHi, is shown in

Fig. 1c. It is sharply peaked, non–Gaussian and non–exponential. The ogival shape is very

1The ogival arch, a pointed arch, is a feature of Gothic cathedrals. It has been introduced in northern France in

the 13th century.
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pronounced in this distribution. It can be explained as the result of a (weighted) convolution

of the distributions ofδT andδe, since both fluctuations of temperature and vapour pressure

contribute to fluctuations of relative humidity (GIERENSetal., 1997).

As an overview of the results obtained so far for T42 resolution, we present in Table 1 the

statistical description of the analysed data, i.e. the low order moments. Although not clearly

apparent from the figures, our data have a certain degree of skewness, even the fluctuations of

temperature and relative humidity. The kurtosis in our data is quite considerable, which is a

property of sharply peaked distributions. Since the number of data records in our analysis is

very large (about 5 million), all deviations from zero of skewness and kurtosis are statistically

significant.

Table 1 also shows the low order moments obtained for northern winter (DJF) and summer

(JJA) seasons. It can be seen that the annual variation of the fluctuation statistics for tempera-

ture, relative humidity and log vapour pressure is small.

2.3 Effect of spatial resolution

Geophysical fields usually show a certain continuity, that is variables do not change much on

small spatial or temporal scales. On larger scales (larger than the autocorrelation scale of the

quantity in question) we expect larger variations of the fields since the probability that we relate

quantities in two different air–masses (air–masses of different origin, e.g. of tropical and polar

origin) increases with the scale of our investigation. Therefore we expect that the width of the

distributions for fluctuations increases with the spatial scale of the analysis. This is confirmed

by the data presented in Fig. 2a,b. These reveal how the fluctuation distributions of temperature

and relative humidity depend on the underlying spatial resolution. We have compared T42 with

T21, T30, and T63 resolutions, corresponding to grid sizes from 208 km (T63) to 625 km (T21)

at the equator.

Table 2 shows the variation of the statistical measures with spatial resolution in numbers. As

expected, the measures of width (standard deviation and variance) decrease with increasing res-

olution. The skewness behaves differently for temperature and relative humidity, respectively;

its variation with resolution is weak. The values of kurtosis increase strongly with increasing

resolution, quantifying the increasingly steeper distribution tails. This result is unexpected. It

implies that the fluctuation statistics differ increasingly from a Gaussian distribution for finer
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spatial resolutions, at least up to T63 resolution. This surprising result will be explained in

Part 2 of our paper.

2.4 Dependence of moments on grid box mean ofRHi

To show how the distribution of fluctuations of relative humidity varies with the mean relative

humidity over ice, we binned the respective fluctuation data in T42 resolution into classes 10%

wide inRHi, with bins centred at 10%, 20%, 30%, . . . . The resulting low order moments from

Eqs. (1-3) in Table 3 show several interesting features. The widest distributions are those with

meanRHi in a medium range (say, 50 to 120%); the distributions with either rather dry or rather

moist (i.e. more extreme) mean values are narrower. “Dry” distributions are positively skewed,

and “moist” distributions are negatively skewed. Distributions are close to symmetric when the

meanRHi is about 70 to 80%.

The dependence of skewness on the meanRHi in Fig. 3 shows individual values of skewness

to reach considerable magnitudes. The skewness found before for the overall distribution of

δRHi must therefore be considered merely a random value; it depends on the relative frequency

of meanRHi values in the data set:

S =
C∑

c=1

Nc

N
Sc, (4)

whereNc is the number of observations in humidity classc, andSc is the skewness taken for

that class. The ratioNc/N is the weight applied to classc in the overall skewness. Since nearly

saturated and supersaturated cases occur less frequently in the upper troposphere than drier and

moderately moist cases (GIERENSetal., 1999;SPICHTINGERetal., 2002), the positive skewness

values for the latter dominate in the overall data, which explains the occurrence of significant

positive skewness in the overall distribution of fluctuations of relative humidity. Notably, the

skewness stays more or less constant in theRHi–classes beyond 100%. The kurtosis decreases

non–monotonically from extremely high values at the low humidity end to about zero at the

very moist end of the humidity range considered. Further, Table 3 shows that a statistically

significant positive kurtosis in the overall distribution is not an incidental result. Except from

the extremely moist cases, all distributions of fluctuations ofRHi are more or less sharply

peaked atδRHi = 0.
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2.5 Geographical variation of standard deviations

So far we have looked at the data regardless of their geographical position. Here we show how

the widths of the fluctuation distributions vary with their location on the globe. For that purpose

we combine all fluctuation data for a given grid cell and compute from these a mean variance

for that cell. Only cells with at least 160 data points are retained in the analysis, in order to

secure a good statistical ensemble. From the mean variances we compute the mean standard

deviations (by taking the square root) that are presented in Figs. 4, 5, and 6.

Figs. 4–6 display a contrast between tropics and mid–latitudes (only the northern hemi-

sphere mid–latitudes are covered by MOZAIC). For instance, the temperature fluctuations tend

to be small in the tropics and larger in the mid–latitudes, while fluctuations of log water vapour

partial pressure and relative humidity are larger in the tropics than in mid-latitudes. The large

fluctuations of the water vapour variables in the tropics is certainly caused by deep convection,

which is a small scale phenomenon relative to T42 resolution. Deep convection is the main

source of water vapour in the considered altitude range in the tropics, but it occurs in a ran-

dom (intermittent) fashion. The humidity fluctuations also show a tendency to smaller values at

higher altitude, consistent with the distributions shown in Figs. 1b,c. Temperature fluctuations

are larger in the extra–tropics than in the tropics. One component contributing to the larger

T–fluctuations in the extra–tropics might be simply the large north–south temperature gradient

in the vicinity of the jet stream, which implies temperature variations in the respective grid cells

even without other sources. Other origins of large temperature fluctuations in the extra–tropics

are fronts and tropopause folds, and waves emanated from the jet stream (SPICHTINGERetal.,

2005). Orographic waves could in principle excite temperature fluctuations as well in the tropics

as in extra–tropics, but the vagaries of continental drift have placed more mountainous regions

in the northern hemisphere mid–latitudes. Hence, orographic waves contribute to temperature

fluctuations more in the latter regions than in the tropics. On the map of temperature fluctua-

tions one may also notice a certain land–sea contrast, especially between North America and the

Atlantic ocean, and between Europe and the Atlantic. This is also probably due to orographic

excitation.
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2.6 Bivariate p.d.f. of δT and δRHi

Fig. 7 shows non–normalised bivariate p.d.f.s for joint fluctuations of temperature and relative

humidity with respect to ice at T42 resolution. As shown byGIERENS etal. (1997), the shape

of the bivariate p.d.f. depends on the respective mean phase state. This becomes evident from

the bivariate p.d.f.s for the mean states

• (T = −53.5± 0.5◦C, RHi = 70± 5%) in Fig. 7a,

• (T = −53.5± 0.5◦C, RHi = 100± 5%) in Fig. 7b, and

• (T = −53.5± 0.5◦C, RHi = 130± 5%) in Fig. 7c.

The temperature rangeT = −53.5 ± 0.5◦C has been chosen because it contains the largest

number of data in our data base.

Apart from the zero–axes, the panels in Fig. 7 contain lines that represent the derivative

dRHi/dT at the respective mean phase state. Pure fluctuations in temperature lead to fluctua-

tions inRHi along this line, whereas pure fluctuations in vapour pressure lead to fluctuations in

RHi along the vertical line.

All bivariate p.d.f.s have an approximately oval shape that is extended in the direction of the

respective derivative. In order to see whether fluctuations ofT or e dominate those ofRHi we

consider the total differential ofRHi:

dRHi =
∂RHi

∂T
dT +

∂RHi

∂e
de = −RHi

L

Rv

dT

T 2
+ RHi

de

e
.

Hence we have for the relative fluctuations of relative humidity

dRHi

RHi

= − L

Rv

dT

T 2
+

de

e
.

We now form the ratioR, viz.

R :=
Rv

L
T 2 σδe/e

σδT

= 1.72× 10−4

(
T

K

)2 σδe/e

σδT

.

R can be interpreted as the influence ratio of vapour concentration to temperature fluctuations

in controlling instantaneous fluctuations of relative humidity. For the conditions from Table 1

and with a typical temperature of 220 K in the upper troposphere this ratio is about 2. It seems

plausible to assume that neitherσδT nor σδe/e will vary much in the free troposphere. Then,

R ∝ T 2, that is,R increases with decreasing altitude. From 200 to 270 K,R varies between
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1.6 and 2.9. In other words, fluctuations of vapour pressure generally have a larger influence on

fluctuations of relative humidity than temperature fluctuations, in particular in the lower layers

of the free troposphere. However, the influence of temperature fluctuations is not negligible,

in particular in the upper troposphere. Thus both should be taken into account in a statistical

cloud scheme for cirrus clouds, all the more as it is the temperature fluctuations that eventually

control the number density of ice crystals.

While GIERENS etal. (1997) modelled the bivariate p.d.f. by fitting Lorentz distributions

(also known as Cauchy distributions) to the 1–d distributions of the fluctuations, we will not do

this here because the tails of the distributions differ too much from Lorentzians. Instead we will

discuss potential causes for the found peculiar distributions in Part 2.

3 Discussion

The present work was initiated with the main goal to provide data on instantaneous fluctua-

tions of the geophysical fields relevant for cloud formation to be used in future stochastic cloud

modules for large–scale models, e.g. for weather prediction or climate research. For this pur-

pose, it is sufficient to derive the bivariate p.d.f.s of the fluctuations, because these are used to

compute the overlap integrals which measure how much of the fluctuations reach into that part

of the{T, RHi} phase space where cloud formation takes place. Unfortunately, a single flight

through a single grid box gives only very limited information on the then present fluctuations

within that grid volume. This is the problem of representativeness that is also an issue for ra-

diosonde measurements, for instance. Satellite data suffer from low resolution, and campaign

data suffer from their sparseness, which is another kind of representativeness problem. Hence

we think that MOZAIC data is the best available compromise, at least for studying the overall

statistics of fluctuations, their geographical and seasonal variation, etc. For this kind of study, it

has better representativeness than radiosondes, better spatial resolution than satellite data, and

covers a larger part of the globe than campaign data. Furthermore, MOZAIC aircraft have been

carrying the same instrumentation since more than ten years, implying a more homogeneous

dataset than obtainable with a collection of campaign data. However, the distribution of fluctu-

ations in a certain situation (i.e. in a certain grid volume at a given time) can probably not be

studied in sufficient detail and for a sufficiently wide variety of situations from observation data

alone; we can perhaps obtain excellent snapshots using campaign data but not more. Fur such a
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purpose it seems necessary to use cloud resolving modelling (e.g.TOMPKINS, 2002), as far as

possible validated with observation data. The MOZAIC data as shown in the present paper can

be useful for such a validation purpose.

TOMPKINS (2002) gives an overview of various cloud cover parameterisations, including

so–called statistical schemes. These schemes often use a quantitys that combines fluctuations

of the total water mixing ratio (i.e. water in all its phases),q′tot, and of temperatureT ′. If the

statistics of both these quantities and their correlation were known from measurements or from

cloud–resolving model simulations, the distribution ofs could be obtained as a convolution of

the distributions forq′tot andT ′. Unfortunately, the required data are difficult to obtain; hence

all approaches generally make assumptions either directly on the distribution ofs or on the

distribution ofq′tot, ignoring the temperature variations (TOMPKINS, 2003). The MOZAIC data

in principle offer the possibility to check such assumptions. For example, we have seen that

temperature fluctuations should not be neglected in a statistical cloud scheme, in particular for

the cirrus clouds in the upper troposphere.

One has to be cautious when comparing a model distribution of fluctuations at a certain

location and a certain time step with averaged data like those presented here. An illustrative

example is bimodality. We have tested whether bimodality shows up in grid boxes where the

MOZAIC air–plane changes from troposphere to stratosphere or vice versa (determined by

the ozone mixing ratio). In order to avoid smoothing effects as much as possible only grid

boxes with an equal number of tropospheric and stratospheric points were retained. We checked

fluctuations of temperature and relative humidity. Surprisingly, the distributions constrained to

those grid boxes show no bimodality, they are still peaked at zero, although the peak is not as

sharp as in the overall distribution. The constrained distributions are broader than the overall

distributions reflecting the change of airmass, and their kurtosis values are lower, reflecting the

reduced sharpness of the peak. When we looked closer to the data and considered the single

cases (i.e. one flight through one grid box) the bimodality was present; the averaging smoothes

it out. This again stresses the point that averaged data like those presented here cannot be

directly employed for a statistical cloud scheme; they may rather be used for validation.

It is known that humidity fluctuations occur on very small scales, much smaller than the res-

olution of the MOZAIC data (which is evident from the small scales of non–stratus clouds).

Hence the question arises how fluctuations on scales smaller than the 15 km resolution of

MOZAIC would contribute to the distributions if one could measure them with MOZAIC. For-
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tunately, water vapour measurements with very high frequency (20 Hz) have been used byCHO

etal. (2000) to determine structure functions. It turned out that water vapour exhibits (anoma-

lous) scaling (i.e. behaves self–similarly) on scales larger than 43 m in their data. The second

structure function has an exponent of approximately 2/3 in the free troposphere; it is dual to a

power spectrumE(k) ∝ k−5/3. The total “energy” is equivalent to the variance in the underly-

ing data. Integrating the power spectrum a) fromk = 1/300 km−1 to k = 1/15 km−1 (i.e. from

the T42 grid size to the MOZAIC resolution) and b) fromk = 1/300 km−1 to k = 1 km−1 (i.e.

to a much finer resolution) and taking the ratio gives 1.13 (integrating case b up tok = ∞ gives

1.16). Hence we may conclude that the variance of the water vapour fluctuation distributions as

seen by the MOZAIC measurements is perhaps underestimated by about 15%.

For the present purpose it was irrelevant to use the information on thesequenceof the

MOZAIC data. Yet, they may also be considered as time series, i.e. stochastic processes. Then

the sequence of the data is the prime interest. In such an approach one can obtain important

information on autocorrelation lengths (the scale at which the autocorrelation function drops

below a certain threshold, usually zero), structure functions and scaling behaviour (PIERRE-

HUMBERT, 1996;CHO etal., 2000), and (multifractal) characterisations of non–stationarity and

intermittency (e.g.DAVIS etal., 1994;SORNETTE, 2004). Such topics will be treated in Part 2.

4 Summary

We have investigated statistics of instantaneous fluctuations of temperature, vapour pressure,

and relative humidity using nine years of MOZAIC data, which gave about 5 million usable data

points. This study has been undertaken with the idea that such data can be used for validation

of statistical cloud schemes.

It turned out that the probability density distributions are peaked, and clearly non–Gaussian.

Whereas the p.d.f. of vapour pressure fluctuations shows convex wings, the two other p.d.f.s

display an ogival shape, in particular the p.d.f. of humidity fluctuations. Low order statistical

moments (up to kurtosis) have been determined, and the influence of spatial resolution on the

moments has been studied. In particular the widths of the distributions turn out to shrink with

higher resolution. A Gaussian shape of the p.d.f.s did not appear. The skewness of the p.d.f.s of

relative humidity, conditioned on the mean relative humidity, depends on the latter. The p.d.f.

is close to symmetric when the background humidity is approximately 70%. The distributions
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are right skewed for drier and left skewed for moister backgrounds.

Seasonal variation of the distributions were studied and appeared as weak. Geographical

distributions of the mean standard deviations of the fluctuations were shown. It turned out that

temperature fluctuations are larger in the extra–tropics and over land than over the tropics and

over the ocean. On the contrary, humidity variations (absolute and relative) are largest were

deep convection serves as the dominant source of moisture in the main flight altitudes, that is in

the tropics, in particular over the continents.

From our results we conclude that temperature variations cannot be neglected in a statistical

cloud scheme. Bivariate distributions for joint fluctuations of temperature and relative humid-

ity demonstrate the dominating influence of temperature variations on fluctuations of relative

humidity except for supersaturated background states where fluctuations of vapour pressure

become equally influencing.

The peculiar ogival shape of the humidity p.d.f.s have been found also in studies on turbu-

lence and other phenomena. In turbulence, the ogival shape is related to intermittency which

can be demonstrated using results from a numerical simulation of Rayleigh–Bénard convection.

These and other investigations detailing the cause of the ogival shape will be presented in Part 2.
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Tables

Table 1: Statistical description of the distributions of instantaneous fluctuations of temperature,

relative humidity over ice, water vapour partial pressure and the relative fluctuations of water

vapour partial pressure in T42 resolution. The low order moments are also given for northern

winter (DJF) and summer (JJA) months.

variable σ variance skewness kurtosis

δT 0.82 0.68 0.24 7.64

δRHi 9.57 91.7 0.23 8.16

δe 0.61 0.37 1.36 120

δe/e 0.18 0.03 1.71 24.4

DJF

δT 0.83 0.69 0.21 6.87

δRHi 8.44 71.2 0.26 10.6

δe/e 0.16 0.03 1.43 18.8

JJA

δT 0.82 0.67 0.27 9.20

δRHi 10.7 115 0.22 6.82

δe/e 0.20 0.04 1.78 23.7
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Table 2: Dependence of standard deviation, variance, skewness and kurtosis of fluctuations of

temperature and relative humidity over ice on spatial resolution.

δT (K) σ variance skewness kurtosis

T21 1.20 1.44 0.15 5.42

T30 0.95 0.91 0.20 6.60

T42 0.82 0.68 0.24 7.64

T63 0.70 0.49 0.33 10.6

δRHi (%) σ variance skewness kurtosis

T21 12.96 168 0.25 5.23

T30 10.80 117 0.25 6.89

T42 9.57 91.7 0.23 8.16

T63 5.51 30.4 0.49 17.7

δe (Pa) σ variance skewness kurtosis

T21 0.61 0.37 1.36 120

T30 0.65 0.42 1.46 107

T42 0.61 0.37 1.36 120

T63 0.44 0.20 2.09 145
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Table 3: Standard deviation, variance, skewness and kurtosis of fluctuations ofRHi in T42

resolution as a function of the respective meanRHi.

RHi (%) σ variance skewness kurtosis

10 2.21 4.90 3.06 55.5

20 3.89 15.1 2.69 36.1

30 6.46 41.8 1.91 16.5

40 9.09 82.6 1.39 9.40

50 11.4 131 0.90 5.45

60 13.0 169 0.53 3.64

70 13.9 194 0.21 2.77

80 13.9 192 -0.09 2.77

90 13.2 174 -0.32 3.02

100 12.2 148 -0.50 3.84

110 11.0 121 -0.71 4.83

120 10.2 104 -0.71 4.70

130 9.58 91.7 -0.80 5.36

140 8.73 76.2 -0.73 4.84

150 8.05 64.9 -0.63 3.34

160 6.85 47.0 -0.66 2.76

170 5.68 32.3 -0.82 2.81

180 4.49 20.2 -0.76 1.26
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Figure captions

Figure 1: P.d.f.s of MOZAIC instantaneous fluctuations of (a) temperature, (b) water vapour

pressure, and (c) relative humidity over ice in T42 resolution, from two layers in the tropopause

region,275 ≥ p ≥ 225 hPa (dashed) and225 ≥ p ≥ 175 hPa (solid).

Figure 2: P.d.f.s of MOZAIC instantaneous fluctuations of (a) temperature, (b)RHi in the tro-

pospause region (275 to 175 hPa) for T21, T30, T42, and T63 spatial resolutions.

Figure 3: Skewness of the MOZAICRHi fluctuations in T42 resolution as a function of grid

box mean relative humidity over ice,RHi. Values from Table 3.

Figure 4: Map of geographical variation of the standard variation,σT , of temperature fluctu-

ations on the T42 grid. Upper panel: Pressure range 175 to 225 hPa, lower panel: 225 to

275 hPa.

Figure 5: As Fig. 4, but forσδe/e.

Figure 6: As Fig. 4, but forσRHi
.

Figure 7: Non–normalised bivariate p.d.f.s of MOZAIC joint fluctuations of temperature and

relative humidity over ice in T42 resolution for the pressure range 275 to 175 hPa. The mean

states have temperatureT = −53.5 ± 0.5◦C and relative humidity (a)RHi = 70 ± 5%, (b)

RHi = 100± 5%, (c) RHi = 130± 5%. Contours (shading) are 1, 3, 10, and 30 samples. The

slant line represents the derivativedRHi/dT at the mean state.
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Figure 1:P.d.f.s of MOZAIC instantaneous fluctuations of (a) temperature, (b) water vapour pressure,
and (c) relative humidity over ice in T42 resolution, from two layers in the tropopause region,275 ≥
p ≥ 225 hPa (dashed) and225 ≥ p ≥ 175 hPa (solid).
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Figure 2:P.d.f.s of MOZAIC instantaneous fluctuations of (a) temperature, (b)RHi in the tropospause
region (275 to 175 hPa) for T21, T30, T42, and T63 spatial resolutions.
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Figure 3:Skewness of the MOZAICRHi fluctuations in T42 resolution as a function of grid box mean
relative humidity over ice,RHi. Values from Table 3.
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Figure 4:Map of geographical variation of the standard variation,σT , of temperature fluctuations on
the T42 grid. Upper panel: Pressure range 175 to 225 hPa, lower panel: 225 to 275 hPa.
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Figure 5:As Fig. 4, but forσδe/e.
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Figure 6:As Fig. 4, but forσRHi .
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a)

b)

c)

Figure 7:Non–normalised bivariate p.d.f.s of MOZAIC joint fluctuations of temperature and relative
humidity over ice in T42 resolution for the pressure range 275 to 175 hPa. The mean states have tem-
peratureT = −53.5 ± 0.5◦C and relative humidity (a)RHi = 70 ± 5%, (b) RHi = 100 ± 5%, (c)
RHi = 130 ± 5%. Contours (shading) are 1, 3, 10, and 30 samples. The slant line represents the
derivativedRHi/dT at the mean state.
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