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Abstract
Probability density functions (p.d.f.s) in MOZAIC instantaneous fluctuations of temper-

ature, relative and absolute humidity with various spatial resolutions had shown signs of

intermittency (GIERENS et al., 2007). This appears to have originated either from turbu-

lence or certain physical processes (e.g. gravity waves, deep convection) that bring air

masses of different origin close together or from air mass boundaries within the averaging

volumes, at which the thermodynamical properties show a discontinuity and are nearly in-

dependent on both sides of the boundary. In the present paper, we derive a stochastic model

for the observed p.d.f.s in the tropopause region and compare the p.d.f.s of the fluctuations

in the atmosphere to small–scale Rayleigh–Bénard convection p.d.f.s with similar shapes.

In both cases, intermittency originates from rare events of large amplitude superposed unto

a Gaussian background. The peculiar ogival shape of some of the distributions results

from the sampling procedure, and the ogival character becomes more pronounced with in-

creasing spatial resolution. Analysis of structure functions up to order three reveals that

the MOZAIC data represent an intermediate state between large–scale two–dimensional

and small–scale three–dimensional inertial range turbulence. This can be visualised by the

scale interaction of the typical length of MOZAIC flight legs and the sampling rate (and

hence also spacing). While flight legs belong to and exceed the synoptic scale, the events

causing intermittency have a scale roughly corresponding to the sampling scale which is

clearly sub–synoptic. Our results are directly relevant for the development of stochastic

cloud–microphysical schemes in general circulation and weather forecast models.

Keywords: Fluctuations; Tropopause; Intermittency; Structure Function; Stochastic Model
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Instantane Fluktuationen von Temperatur und Feuchte

in der oberen Troposphäre und der Tropopausenregion.

Teil 2: Strukturfunktionen und Intermittenz

Zusammenfassung.
Wahrscheinlichkeitsdichtefunktionen (p.d.f.s) instantaner Fluktuationen der Temperatur,

der relativen und absoluten Feuchte aus MOZAIC–Daten zeigten bei verschiedenen räum-

lichen Auflösungen Anzeichen von Intermittenz (GIERENS et al., 2007). Diese scheint en-

tweder von Turbulenz oder von bestimmten physikalischen Prozessen (z.B. Schwerewellen,

tiefe Konvektion) herzurühren, die Luftmassen verschiedenen Ursprungs nahe zusammen

führen, oder von Luftmassengrenzen innerhalb der Mittelungsvolumina, an denen sich

die thermodynamischen Eigenschaften sprunghaft ändern, wobei die jeweiligen Werte vor

und hinter der Grenze so gut wie unabhängig voneinander sind. In diesem Artikel leiten

wir ein stochastisches Modell für die beobachteten p.d.f.s in der Tropopausenregion ab

und vergleichen die p.d.f.s der Fluktuationen in der Atmosphäre mit ähnlich aussehen-

den p.d.f.s, die bei kleinskaliger Rayleigh–Bénard Konvektion auftreten. In beiden Fällen

ergibt sich Intermittenz aus seltenen Ereignissen großer Amplitude, die einem Gauß’schen

Hintergrund überlagert sind. Die besondere Ogival–Form einiger Verteilungen resultiert

aus dem angewandten Verfahren der Stichprobennahme; sie wird bei zunehmender raum-

zeitlicher Auflösung stärker ausgeprägt. Eine Analyse der Strukturfunktionen bis zur drit-

ten Ordnung zeigt, dass die MOZAIC–Daten sowohl von großskaliger zweidimensionaler

als auch von kleinskaliger dreidimensionaler Turbulenz beeinflusst sind. Dies ist durch die

Skaleninteraktion der typischen Länge der MOZAIC Flugstrecken einerseits und der der

Abtastrate entsprechenden Strecken andererseits erklärbar. Während Flugstrecken zur syn-

optischen Skala gehören bzw. diese übersteigen, haben die Intermittenz verursachenden

Ereignisse eine Skala, die ungefähr der Abtastdistanz entspricht und deutlich unterhalb der

synoptischen Skala liegt. Unsere Ergebnisse sind direkt relevant für die Entwicklung von

stochastischen wolken–mikrophysikalischen Schemata in allgemeinen Zirkulations- und

Wettervorhersagemodellen.

Schlagworte: Fluktuationen; Tropopause; Strukturfunktion; Intermittenz; Stochastisches

Modell
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1 Introduction

Forthcoming stochastic cloud physics modules in large–scale models of the atmosphere (weather

forecast and climate models) require knowledge of the probability density functions (p.d.f.s) of

temperature and moisture in each grid box. In order to assess the characteristics of these p.d.f.s,

GIERENS et al. (2007, hereafter Part 1) studied nine years of data from the MOZAIC project

(Measurement of ozone, water vapour, carbon monoxide and nitrogen oxides by Airbus in–

service aircraft, see MARENCO et al., 1998; BORTZ et al., 2006) and analysed the instantaneous

fluctuations that can be obtained from that data base. Within the MOZAIC programme, the

large–scale distribution of water vapour has been measured since August 1994 on board of

five Airbus A340 aircraft during scheduled flights operated by civil airlines. A major part of

MOZAIC data is obtained in the tropopause region during intercontinental flights. Data are

available in 4 s (�1 km) and 1 min (�15 km) resolution.

Temperature or moisture fluctuations are called instantaneous if they occur simultaneously

within a volume corresponding to a model grid box. Part 1 showed that their p.d.f.s are peaked

and clearly non–Gaussian. Whereas the p.d.f. of vapour pressure fluctuations showed convex

wings, the two other p.d.f.s displayed a shape named “ogival” in Part 1 and shown schematically

in Fig. 1, in particular the p.d.f. of humidity fluctuations. The p.d.f.s of the fluctuations have

been determined for various resolutions of a large–scale model, ranging from T21 (grid spacing

of about 680 km at the equator) to T63 (about 208 km). The variances of the p.d.f.s decrease

with finer grid spacing as a consequence of autocorrelation in the investigated fields. Also

the kurtosis values increase strongly with higher resolution, caused by increasingly steeper

distribution tails. A Gaussian shape of the p.d.f.s did not appear.

In the present paper, we will investigate the origin of the peculiar shape of the distributions

by means of a Monte Carlo simulation. Similarly shaped distributions appear in a variety of

fields, e.g. economics (PODOBNIK et al., 2000), spectroscopy (TONKOV et al., 1996), and also

in turbulent laboratory flows for which they have been interpreted as signs of intermittency (e.g.

CHENG, 1987; EGGERS and GROSSMANN, 1991; SHE et al., 1991). For the latter, we compare

such distributions arising from turbulent Rayleigh–Bénard convection to the MOZAIC data

from the tropopause region. Intermittency is a feature of non–linear dynamical systems: Peri-

ods of relatively quiescent (regular) behaviour are sometimes, at unpredictable points in time,

interrupted by short periods of extreme fluctuations. Intermittent behaviour in the MOZAIC
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data can also be studied by other means when they are considered as time series, i.e. stochas-

tic processes. Then, the sequence of the data allows to obtain information on autocorrelation

lengths, structure functions and scaling behaviour (PIERREHUMBERT, 1996; CHO et al., 2000),

or (multifractal) characterisations of non–stationarity and intermittency (e.g. DAVIS et al., 1994;

SORNETTE, 2004). These are also topics of the present paper.

Sec. 2 describes the statistical analysis of the scalar fluctuations, focusing on intermittency

and structure functions, in relation to analogous formation processes of the MOZAIC p.d.f.s to

those of small–scale turbulent Rayleigh–Bénard convection. Sec. 3 discusses mathematical and

physical aspects relevant to our analysis, and Sec. 4 presents our conclusions.

2 Statistical analyses of fluctuations

There were two remarkable features in the temperature distributions found in Part 1: First,

they were peaked at their mean value (�T � �) and second, they were by no means Gaussian.

Instead, the distribution tails corresponded to exponentials (so–called Laplace distributions)

with a slight tendency of an S–shape on both tails of the distributions (i.e. concave–convex

on the lower tail, and convex–concave on the upper tail). GIERENS et al. (2007) called this

an ogival shape because it resembles certain architectural features of gothic cathedrals, termed

ogive.

The distribution of fluctuations of relative humidity with respect to ice, �RHi, was sharply

peaked, non–Gaussian and non–exponential, and their ogival shape was very pronounced. It

could be explained as the result of a (weighted) convolution of the distributions of �T and

�e (GIERENS et al., 1997), since both fluctuations of temperature T and vapour pressure e

contribute to fluctuations of relative humidity.

GIERENS et al. (1997) had used only one year of MOZAIC data and modelled the bivariate

p.d.f. of joint fluctuations of temperature and relative humidity by fitting Lorentz distributions

(also known as Cauchy distributions) to the 1–d distributions of the fluctuations, but the tails

of the distributions in Part 1 differed too much from Lorentzians, so that this approach was not

taken again. Instead we will use a Monte Carlo simulation in Sec. 2.1 to evaluate potential

causes for the peculiar distributions that we found in Part 1.

Sec. 2.2 will investigate the apparent similarity between the MOZAIC and Monte Carlo

p.d.f.s with respect to those found in small–scale convective turbulence. We then analyse struc-
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ture functions from the MOZAIC data in Sec. 2.3 and test the tails of the p.d.f.s for presence

of stretched exponentials in Sec. 2.4. These mathematical exercises are performed in order to

establish the link between the properties of the tropopause region studied here and work of a

more general scientific scope in which fluctuations of other quantities (even economic indexes,

e.g. PODOBNIK et al., 2000) are investigated.

2.1 Ogival p.d.f.s: Monte Carlo simulation approach

Our concept of the processes that lead to the observed distributions is as follows: Within a

certain airmass, a variable fluctuates around a more or less stable basic state. The subsequent

fluctuations may be autocorrelated. Intermittently, the basic state changes significantly (e.g. the

MOZAIC airplane crosses the tropopause, for other processes see Sec. 3.2), and the fluctuations

are now centred around a new basic state. Such a process has been termed Levy–walk or Levy–

flight (MANDELBROT, 1983; PODOBNIK et al., 2000; SORNETTE, 2004). We now set up a

Monte Carlo simulation in order to investigate which kinds of distributions can arise from such

a scenario.

To simulate the random fluctuations, we invoke a discrete Ornstein–Uhlenbeck process (cf.

GIERENS et al., 1987; EMBRECHTS et al., 1997): For n � N let

�n � c �n�� � ��� c�Zn � (1)

where Zn is a series of mutually independent identically distributed (i.i.d.) increments, and

c � ��� �� is a parameter that controls the correlation between successive values of the process.

The expectation value of the increments is zero for all n (different from GIERENS et al., 1987),

with variance ��Z . We choose a standard Gaussian distribution for the incrementsZn, so ��Z � �.

�n is normally distributed for all values of n and all choices of c. This follows from complete

induction and from the stability of normal distributions. The variance of the �n is

���n � ��Z 	n�c� � (2)

with1

	n�c� �
�� c� 
 c�n��

� � c
� (3)

1A misprint in Eq. (6) of GIERENS et al. (1987) has been corrected.
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Thus, ���n depends on n (except for c � � where ��n � �Z � n), but it quickly approaches a

limiting value

lim
n��

���n � ��Z
�� c

� � c
� c � � (4)

that is independent of n. So, the Monte Carlo simulation has a spin–up phase that can be dis-

carded when analysing the results. For c � � we have ���n � ��Z , and for c � � the distribution

of �n is narrower than the distribution of the increments. For large n, the variance of the process

approaches a constant limit, and that is the reason to prefer this process over a standard Brow-

nian motion process, for instance. The covariance ��n�m � ���nc
m�n (for m � n), so that the

correlation function

��m� n� �� ��n�m	�
�
�n � cm�n (5)

depends in an exponential way on the difference m � n, a property that the discrete Ornstein–

Uhlenbeck process shares with its continuous counterpart (e.g. SORNETTE, 2004).

We superpose the discrete Ornstein–Uhlenbeck process �n onto another process an (where

n � N) representing the intermittently changing background state, i.e. �n � an. The process

an is constructed in the following way: We set a� � � and invoke for each n a random number

generator giving Gaussian deviates. Only when the selected random number lies in the far wings

of the Gaussian (e.g. more than 
�), the value of an changes, otherwise an � an��. When an

changes, a new value of it is selected at random from a uniform deviate in an interval ��L��L�.

The result of these Monte Carlo simulations is shown in Fig. 2a. The solid line is the re-

sulting fluctuation distribution for a constant background (i.e. an � � �n) when the correlation

parameter, c, is zero, i.e. it is the same distribution as that of the increments, in our case a

standard normal distribution. A non–vanishing correlation parameter has the effect to keep the

fluctuations closer to the background state, i.e. making the distribution more sharply peaked

(as observed in Part 1 for the MOZAIC data). This is shown as the dashed line. A changing

background leads to a flat core of the distribution (dotted line).

We can note the following features (cf. MILLER et al., 1995): Without any correlation (i.e.

c � �) and with a constant background, the fluctuation around the background p.d.f. is Gaus-

sian, i.e. of the same type as the increments. When we allow for a 2–point correlation by setting

c to a non–zero value, the fluctuation distribution narrows and concentrates around the basic

state (here zero). The distribution becomes sharply peaked only for c � ���. When we addi-

tionally switch on the intermittently changing background, the distribution becomes flat in its
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core, which can be perceived as the envelope of a superposition of distributions for a number

of different constant background values in the range ��L��L�. The centrally flat distribution

is remarkably similar to the distributions of vertical velocity at higher Rayleigh numbers in the

direct numerical simulation of Rayleigh–Bénard convection shown below in Sec. 2.2.

Modeling the ogival shape in the simulations requires an additional step: In our data anal-

ysis, we collect all data belonging to the same grid cell, ignoring everything outside for the

determination of the fluctuations. We simulate this by conducting a similar sampling proce-

dure. We split our random deviates an � �n in disjoint groups of size N , average over each

group and record only the deviations of the an � �n to the corresponding group average as the

relevant fluctuations. The result of this procedure are the ogival distributions shown in Fig. 2b.

Different group sizes represent different spatial resolutions. As in Part 1 with the MOZAIC

data, we see that the distributions are narrowing with higher spatial resolution of the underlying

grid, i.e. smaller group sizes N .

The Monte Carlo simulation shows that the ogival shape results from the peculiar sampling

technique that is necessary when fluctuations within grid cells of large–scale models are to be

analysed. Cutting the flight trajectories into pieces that are smaller than synoptic length scales

makes it relatively improbable that an airmass boundary occurs in a certain grid box. This

together with the autocorrelation in the fields leads to the central peaks in the distributions.

The tails, on the contrary, are then formed in those rare grid boxes where an airmass boundary

occurs and where hence at least two differing background states are present.

When we set c � � in Eq. (1), we obtain again a Gaussian distribution, regardless of chang-

ing background and the peculiar sampling procedure. We have also noted the central peak to

become more pronounced with increasing resolution. With a group size of N � �� (very high

resolution, not shown) the central peak protrudes about three orders of magnitude from the

distribution tails. Thus, a Gaussian limit distribution cannot be expected for higher resolution.

2.2 Centrally flat and ogival p.d.f.s in small–scale turbulence

Interestingly, centrally flat p.d.f.s or such with ogival shape have also been found in direct

numerical simulations (DNS) of small–scale thermal convection, namely of Rayleigh–Bénard

convection (i. e. convection in a fluid heated from below and confined between two horizontal

plates, see KOSCHMIEDER, 1993; SHISHKINA and WAGNER, 2006, for an overview). MOENG
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and ROTUNNO (1990) have shown that the Rayleigh–Bénard system can be regarded also as

an archetypical representation of atmospheric turbulence, in particular for the unstable plane-

tary boundary layer (cf. WYNGAARD, 1992). Accordingly, KIEMLE et al. (1997) have shown

autocovariance functions from near the top of the convective boundary layer which strongly

resemble the ogival shape investigated here.

Here, we will analyse the mechanisms leading to the observed p.d.f.s in the Rayleigh–

Bénard convection, without making any claim that an analogous phenomenon must exist in

the tropopause region. However, we will demonstrate that the processes leading to the ogival

or flat p.d.f.s in either small–scale convective turbulence or fluctuations in the tropopause re-

gion can be tied to certain key features occurring in both flows. Thus, the results obtained for

Rayleigh–Bénard convection will prove to be valuable for identifying the relevant processes for

ogival p.d.f.s in the troposphere–stratosphere interface region.

Accordingly, we compare results by DOTZEK (1993) and DOTZEK and FIEDLER (1995)

from two–dimensional DNS of Rayleigh–Bénard convection in water (Prandtl number Pr � 
)

with the p.d.f.s from Part 1 and the Monte Carlo simulation in Sec. 2.1 to investigate probable

reasons for the observed similarity of the centrally flat or ogival distributions. Fig. 3 shows

p.d.f.s of (a) vertical velocity w, and (b) temperature T in the central layer of the convecting

fluid with increasing degree of turbulence, expressed by the Rayleigh number Ra, spanning a

range from well inside the soft turbulent to just within the hard turbulent regime (cf. CASTAING

et al., 1989; GROSSMANN and LOHSE, 2000; NIEMELA et al., 2000).

The distinction between soft and hard turbulence based on the shape of p.d.f.s has been

made by a sudden change from Gaussian to exponential (Laplace) probability densities. The

explanation given for this effect is the activity of thermal plumes emanating from the boundary

layers. The difference to the case of lower Ra is that in the hard turbulent regime, plumes in the

middle of the layer are very rare events occurring highly localized in space as well as in time.

Such a flow type would then be likely to produce two states of enhanced probability (cf.

LOHSE and GROSSMANN, 1993; KADANOFF, 2001): First, due to the strong mixing, it is most

likely to find the core region of the fluid in a highly turbulent state, yet close to the volume

average of the quantitity observed, e.g. zero vertical velocity or a temperature close to the base–

state midplane temperature. Second, the passage of a plume would lead to exceptionally high

values ofw and T fluctuations. Thus, with increasing degree of buoyancy–generated turbulence,

an initially Gaussian p.d.f. will be transformed to one with a high center peak and heavy tails,
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i.e. slow decay rates at the sides.

Measurements and simulations first showed that these p.d.f.s could be fit by (stretched)

exponentials (HESLOT et al., 1987; CASTAING et al., 1989; DELUCA et al., 1990; WERNE et al.,

1991; PROCACCIA et al., 1991; VINCENT and MENEGUZZI, 1991; MASSAIOLI et al., 1993;

WERNE, 1993), but this criterion was also doubted (WU and LIBCHABER, 1992; CHRISTIE

and DOMARADZKI, 1993, 1994; DOTZEK, 1993; SIGGIA, 1994; KERR, 1996), as it became

evident that exponentials can be found at low Ra also, and there are non–exponential p.d.f.s of

a mixed type for cases in which the theory predicted pure exponentials.

Aside from the fact that the p.d.f.s for the lowest Rayleigh number in Fig. 3 are not as

symmetric as for the other cases (a non–symmetric mean horizontal flow2 was imposed in this

case), the p.d.f.s are clearly not Gaussian but show the more or less linear shape characteristic

of exponentials. This holds for w in particular and contradicts the assumption that such p.d.f.s

can only develop if the turbulence has become intermittent on the way to hard turbulence as

described above.

The p.d.f.s of w in Fig. 3a for the higher Rayleigh numbers exhibit a plateau region around

w � � which extends to about 1 �–unit. At w	� � �
, another region of slow decrease is

located. For larger values ofw	�, a steep exponential decrease is found. Obviously, these p.d.f.s

are neither purely Gaussian nor purely exponential, but of a mixed type. Note the similarity of

the central plateau region to that in Fig. 2a. This type of p.d.f. can be understood from the fact

that w is not a passive scalar like temperature but a part of the velocity vector. Furthermore, w

is directly driven both by buoyancy (i.e. by T ) and by the inertial and pressure gradient forces

acting on the convecting fluid confined between the two horizontal plates.

At the lowest Rayleigh number, w � � is the most probable state, and exponential tails

indicate the relatively frequent passage of thermal plumes with high vertical velocity deviations

from the volume average w � �. For the higher Ra, the flow becomes more turbulent, and just

by this turbulence itself, a broader range of fluctuations around w � � becomes more or less

equally likely within ���, even outside the plumes in the bulk of the fluid.

Following a first notable decrease, in particular for w � ����, the slower decrease near

w � 
� (the “shoulders” of the distributions) may be due to return flows less intense than within

the plumes, but more intense than the bulk fluctuations. Such return flows may be initiated from

2A superposition of Couette and Hagen–Poiseuille flow.
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a plume impinging on one of the plates and accelerating boundary–layer fluid in the vertical by

inducing local pressure gradient forces. For w � 
�, steep and roughly exponential tails of the

w–distributions follow, the characteristic of the passage of thermal plumes with high w–values.

A truly ogival shape, however, develops in the temperature p.d.f.s of Fig. 3b from Ra �


������ onward. The centre region near zero temperature fluctuation shows a dominant narrow

peak of width � ��� �. For T	� � ��, curvature has changed, and the p.d.f.s fall off more or

less like exponentials. This is again a footprint of the convective plumes, advecting boundary–

layer heat and thereby large temperature fluctuations to the midplane region of the fluid layer.

Thus, the temperature p.d.f.s from Rayleigh–Bénard convection have a strikingly similar

ogival shape as those from Fig. 2b and from the MOZAIC data of Part 1 obtained on a com-

pletely different spatial scale, and a similar argument holds for the centrally flat part of the

w–distribution compared to those from the discrete Ornstein–Uhlenbeck process. If this simi-

larity is not coincidental, then an analogous mechanism causing it must exist both near the top

of the troposphere and in the buoyancy–generated laboratory turbulence.

One candidate process for the atmosphere was the intermittent intersection of discontinu-

ities in the temperature and moisture fields along the flight path, for instance by variations in

tropopause height, causing the MOZAIC aircraft to sometimes fly in stratospheric air and some-

times under tropospheric conditions. Other candidate processes are discussed in Sec. 3.2. The

result is an intermittent signal in the MOZAIC data of Part 1 as reproduced in the Monte Carlo

simulations in Fig. 2.

In the laboratory convection, the exponential or even ogival p.d.f.s result from the intermit-

tency of boundary layer eruptions into the midplane of the fluid layer. Similar to the discrete

Ornstein–Uhlenbeck process, the plateau may be envisaged as a superposition of an ensemble

of w–p.d.f.s shifted by small displacements �w. Using the purely exponential distribution from

curve (a) in Fig. 3a as a basis, we may write the superposition of 
N such distributions as

pN�w� �






�


N

NX
i��

e��jw�wij � e��jw�wij � (6)

Herein, wi � �i� ���w and �w � 
	N , for which N � 
�, � � �, and scaling factor 
 � ���

were chosen as parameters for comparison to the distributions in Fig. 3a. The resulting envelope

distributions (not shown) for these and other choices of the parameters revealed that the limit

distribution for large N with vanishing �w indeed shows a centrally flat region and purely

exponential tails. The “shoulders” observed in Fig. 3a are not reproduced thereby, however.
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This gives us confidence that they do indeed result from a separate physical phenomenon like

the return flows mentioned above.

Thus, in the vertical velocity p.d.f.s, the plateau regions can be explained as above by the

interaction of a turbulent field with itself (cf. SHE, 1991b). For the temperature p.d.f.s, the sit-

uation is qualitatively identical to the MOZAIC humidity data or to Fig. 2b. A quasi–passive

scalar (temperature in the Rayleigh–Bénard convection, moisture in the MOZAIC data) is su-

perposed to an intermittent field (cf. MILLER et al., 1995), resulting in the ogival shape of the

p.d.f.s. Even a hint of the sampling effect analogous to Fig. 2b can be seen in Fig. 3b: In the dis-

crete Ornstein–Uhlenbeck process, the ogival center peak was most pronounced for the finest

sampling. In the DNS of Rayleigh–Bénard convection, the grid sizes were held constant for

the simulations shown. However, with increasing Rayleigh number, the coherent structures in

the flow become more diminuitive — hence the grid size relative to the typical diameter of the

structures increases, and the effective sampling becomes coarser. Indeed, there is a tendency for

the sharpest peak among the temperature p.d.f.s (b) to (d) in Fig. 3b to be found for the lowest

Rayleigh number, where the sampling is finest.

Note that the low Rayleigh number and the superimposed mean flow for curves (a) in Fig. 3

prevent both the plateau region in w and the ogival peak in T for the p.d.f.s. Here, the thermal

plumes are still broad with relatively weak gradients at their sides. Furthermore, the symmetry–

breaking mean flow tilts the plumes, such that a horizontal cross-section runs through the plume

in an oblique direction, further reducing the gradients along the horizontal. This underlines the

role of steep gradients for the development of intermittency.

2.3 Structure functions

Meteorological fields are autocorrelated over certain distances. The sharp peaks in the fluctua-

tion statistics (Part 1) even indicate a rather strong autocorrelation so that a correlation parameter

c close to a maximum of unity was required in the simulation to reproduce the observations. In

order to obtain more information on the autocorrelation, we computed structure functions and

autocovariance functions of the potential temperature for a number of long MOZAIC flights.

Potential temperature � is selected to remove any bias from pressure variations on the flights

which merely results from altitude changes (the effect of that is but small). We selected the flight

with the longest continuous cruise above 275 hPa from each month in 1997. It turned out that
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with one exception, these were flights between East Asia and Europe. Since the temperature

sensor of the MOZAIC equipment is sufficiently fast, we take the data in 4 s resolution, which

corresponds approximately to 1 km distance. The selected flight legs are between 8027 and

10139 km long.

The autocovariance function of a time series ��t� with mean value h�i is:

Cov�r� � h ���t�� h�i� ���t� r�� h�i� i � (7)

Cov��� is the variance of the time series, and R�r� �� Cov�r�	Cov��� is the autocorrelation

function. Evidently, these functions can be perceived as a second moment of the time series. A

generalisation to other moments is provided by the structure functions Sq:

Sq�r� � hj��t� r�� ��t�jqi � (8)

Obviously there is a close relation between the second–order structure function S� and the

autocovariance function:

S��r� � 
�Cov���� Cov�r�� (9)

(OBUCHOW, 1958; TAUBENHEIM, 1969). The main interest in structure functions is to quantify

how they scale with lag r. For this purpose, one considers relations of the form

Sq�r� 	 r�q (10)

and investigates whether 
q is proportional to q (normal scaling) or not. If not (anomalous

scaling), then 
q for q 
� 
 contains information that is not already contained in the power

spectrum of the time series (CHO et al., 2000; DAVIS et al., 1994). Since the covariance vanishes

for stochastic processes at lags much larger than the correlation length rc (R � e��), the limiting

value of S���� � 
Cov���. Hence, the power law form of the structure functions can only

be valid in a range that does not exceed the correlation length too far. The Wiener–Khintchin

theorem relates the autocorrelation, hence S� and 
�, with the power spectrum, E�k� 	 k�� by

their exponents:

� � 
� � � � (11)

First, let us look at the autocorrelation (Fig. 4). On scales that correspond to T42 resolution

of climate models (about 250 km, see Part 1) the autocorrelation typically exceeds 0.5. Cor-

relation lengths are of the order 1000 km (i. e. the synoptic scale), which is much larger than
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the lateral dimensions of climate model grid boxes. Thus, we conclude that typically, there is a

pretty high degree of coherence in the potential temperature field within a grid box of a climate

model. The same is valid for the temperature itself since the variation of the Exner function

� � �p�	p�
R�cp is small, both in our time series as well as from level to level in a climate or

weather prediction model. The strong autocorrelation is reflected by the sharp peaks at zero

fluctuation in the p.d.f.s of Part 1, and is also consistent with the high correlation parameter

required in the Monte Carlo simulation to produce a peak at zero fluctuation.

The second–order structure functions (Fig.5), computed via the autocovariances, have 
�

ranging from 0.75 to 1.17. Accordingly, the exponents � in the power spectra range from 1.75

to 2.17. A similar result with � ranging from 1.61 to 2.14 appears when we compute S� directly

from the data. The thick line in Fig. 5 represents an empirical fit of the form (cf. MILLER et al.,

1995):

eS��r� � 
Cov���
�
�� exp���r	rc�

�� �
�

� (12)

with Cov��� � �� K�, rc � ���� km, and 
� � �. eS� has the desired properties for zero and

infinite lag (i.e. eS���� � � and eS���� � 
Cov���). Between r � � and r � rc, it behaves like

a power law function with exponent 
�. The corresponding fit to R�r�,

eR�r� � exp���r	rc�
�� � � (13)

matches the autocorrelation functions of Fig. 4 well (not shown). The integral scale L in turbu-

lence is associated with the motions containing most of the kinetic energy. It can be computed

by integrating the autocorrelation function, i.e. L �
R�
�

R�r� dr (TAUBENHEIM, 1969; LEN-

SCHOW and STANKOV, 1986). If we set 
� � � (which is in the range of our data), and insert the

expression for eR�r� from above, we find L � rc � ���� km which corresponds to the synoptic

scale. With 
� � �, the Fourier transform of eR�r� drops as k�� (i.e. � � 
) for wavenumbers

in excess of �	rc. In spite of a considerable spread in the structure functions of the individual

flights, it seems clear that Kolmogorov’s classical value of � � �	� � ���
 is at the lower end

of our range of values. A corresponding fit of S� with 
� � 
	� turns out to be inappropriate for

our data. CHO et al. (2000) found � � ��
� in the extratropical free troposphere for scales from

43 m to 88 km. This is at the lower limit of our range, but also a bit higher than Kolmogorov’s

value. It is clear as well that our results do not reach � � � which would point to an enstrophy

cascade, characterising quasi–two–dimensional “geostrophic” turbulence on the largest, plan-

etary, scales (CHARNEY, 1971; GAGE and NASTROM, 1986). So it seems that our data are
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affected from both types of turbulence, that is geostrophic turbulence on the largest scales and

mesoscale turbulence on the smaller scales.

According to KOLMOGOROV (1958, see also FALKOVICH and SREENIVASAN (2006)), the

third–order structure function in 3–d turbulence should be proportional to the lag, r, for r in the

inertial range. Of course, the lags we use to compute the structure functions are so large that the

turbulence cannot be considered three–dimensional, and the lags partly even exceed the integral

scale. Hence, it is no surprise to find that in our case, S� increases more steeply than linear with

r, and S� 	 r��	 provides a good fit (not shown). The first–order structure function contains

information on the roughness of the graph g of ��t� versus time t (see DAVIS et al., 1994). The

so–called roughness dimension Dg
�� is related to the exponent 
�:


� � 
�Dg
�� � � � (14)

An almost everywhere differentiable curve has Dg � � while a curve that fills a plane has

Dg � 
. Our first order structure functions were empirically found to be proportional to r���,

that is, 
� � ��� and Dg
�� � ���, lying in the middle of the mentioned extremes. CHO et al.

(2000) find smaller values of 
�, hence their data appear to be less smooth than ours. This is

certainly a consequence of their much smaller sampling interval (50 ms vs. 4 s). 
� � � is an

expression of stochastic continuity, that is the difference of two values of � becomes small with

diminishing lag, as expected. The first three values of 
q, f���� ���� ��
�g, suggest a non–linear

relationship between 
q and q. This anomalous scaling behaviour is consistent with the results of

CHO et al. (2000) although details differ. The scaling behaviour could be better investigated by

considering higher–order structure functions. However, the higher the order, the more sensitive

the results are to outliers in the data. We think that only investigation of a much larger number

of flights would allow to draw conclusions from higher–order structure functions. Such an

investigation is beyond the scope of the present paper.

The relatively low degree of intermittency in the MOZAIC data that is apparent from the

low values of the temperature and humidity fluctuation p.d.f.s in the distribution tails com-

pared to the peaks at zero fluctuation is confirmed by a singularity analysis, for which we

follow DAVIS et al. (1994). Their method is related and conceptually similar to the analysis of

structure functions, but while the structure functions are made up from differences of the time

series over certain lags, the scaling analysis takes the absolute lag–1 differences and averages

them in blocks of increasing size, seeking for the largest changes from block to block. This
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renormalisation–like averaging procedure seems to make the singularity analysis a more robust

tool than the analysis of structure functions.

The interest here is how the block averages h��r�i and their q–th moments h��r�qi scale with

block size r. Similarly to the analysis of structure functions, one makes the ansatz h��r�qi 	

r�Kq , introducing a hierarchy of exponents. The singularity analysis provides an intermittency

parameter, C�, and, equivalently, a fractal dimension,D� � ��C� (for details, see DAVIS et al.,

1994). The intermittency parameter is small (C� � ���) for a relatively smooth curve without

strong spikes. Fig. 6 shows the hierarchy of exponents Kq (corresponding to 
q in the structure

function approach), obtained from the twelve monthly time series of ��t�. C� is the derivative

of Kq at q � �. As expected from the foregoing discussion, we find small values of C� � ����

(D� � ����) for our twelve time series with one exception where C� � ���
 (D� � ����).

These are values typical for smooth curves with low degree of intermittency.

2.4 Stretched exponentials

As noted above, the wings of p.d.f.s of fluctuations in turbulence data (measured or simulated)

are often described as stretched exponentials (cf. LI and MENEVEAU, 2005):

f��� � � p �p�� exp����p� � (15)

with prefactor � and exponent p. These stretched exponentials are also known as Weibull dis-

tributions and have a wide range of applications (cf. GIERENS and BRINKOP, 2002; DOTZEK

et al., 2003, 2005; FEUERSTEIN et al., 2005). A good method to find the best–fit parameters of

a stretched exponential is to plot the data on so–called Weibull probability paper which is to plot

log logf�	�� � F ����g versus log �, where F ��� is the cumulative distribution function (c.d.f.)

of the (one–sided) fluctuations. A stretched exponential appears as a straight line in such a plot.

We have tested whether the wings of the MOZAIC fluctuations of temperature and relative hu-

midity can well be fit by stretched exponentials. For this purpose, we have averaged the two

wings of the corresponding distribution in T42 resolution (Fig. 1 in Part 1), to get a one–sided

positive quantity. From this, we computed the c.d.f.s and plotted them on the Weibull prob-

ability paper in Fig. 7. We see that humidity fluctuations cannot be modeled with a stretched

exponential, which is due to their pronounced ogival character. On the contrary, the temperature

fluctuations can be fit very well with a stretched exponential (with exponent p � ���).
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Stretched exponentials allow for the following interpretation (cf. GIERENS and BRINKOP,

2002): Assume that we measure the (absolute) fluctuation at some point as a function of time.

Further assume that the instrument already shows a fluctuation of size �. Then we may ask

for the probability that the fluctuation size will increase even more, say, to a size � � �. If the

absolute fluctuations were purely exponentially distributed (exponent p � �), then the answer

would be independent of the value of �. In the case of stretched exponentials, however, the

probability of an even larger fluctuation increases with �. In more mathematical terms: Let

f��j��d� be the probability that another positive fluctuation between � and ��d� occurs under

the condition that a fluctuation of size � is already present, then f��j��d� increases with � if

f is a stretched exponential.

3 Discussion

3.1 Mathematical aspects — stable distributions and non–Gaussianity

In our Monte Carlo simulation, we used Gaussian increments to drive the discrete Ornstein–

Uhlenbeck process. We showed that this choice implies that the process itself has Gaussian

distributions for each n. It is of course possible to drive the discrete Ornstein–Uhlenbeck pro-

cess with increments drawn from another distribution as well. In any case, one should use a

stable distribution3 for that. Otherwise, �n would have different distributions for different n

which would render the model useless. If Zn is drawn from a stable distribution, also �n �n

follow that distribution. Yet, apart from that useful property, all stable distributions except the

Gaussian display also strange properties. For instance, they do not have a variance and many of

them, for instance the Cauchy distribution, do not even have a mean, because of their fat tails.

The fat tails, on the other hand, might just be appropriate to model variables like our fluc-

tuation data also having tails far above Gaussians. In order to test the utility of other stable

distributions, we employed the Cauchy distribution for the increments (centred at zero, full

width at half maximum: one). It turned out that the frequent occurrence of values in the far

wings of the Cauchy distribution destroys the autocorrelation unless the parameter c has un-

realistically high values, e.g. c � ������. The distributions of the �n look equal, apart from

3For the topic of stable distributions see GNEDENKO and KOLMOGOROV (1959), EMBRECHTS et al. (1997),

or KUNDU and SIDDANI (2007).
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some noise for c � � and c � ����. Obviously, the discrete Ornstein–Uhlenbeck process with

Cauchy–distributed increments is not a useful model of our fluctuation data.

This is also evident from a singularity analysis of the Monte Carlo–produced time series.

Whereas the discrete Ornstein–Uhlenbeck process with Gaussian increments shows intermit-

tency parameter and fractal dimension close to those of the MOZAIC data (C� � ����, in-

dicating mild intermittency, both with and without changing background), these values differ

much when Cauchy–distributed increments are used to drive the discrete Ornstein–Uhlenbeck

process. In that case, strong intermittency shows up (C� � ��
�), a lot stronger than in the data.

Moreover, the hierarchy of exponents, or the generalized dimensionsD�q� for the Gaussian dis-

crete Ornstein–Uhlenbeck process and for the MOZAIC data look similar. Unfortunately, the

analytical form of other stable distributions “between” the Cauchy and Gaussian distributions

is unknown. Therefore we did not test further stable distributions.

In our analysis of the structure and autocorrelation functions, we found the covariance func-

tion to fall off exponentialy (using 
� � � as above). The discrete Ornstein–Uhlenbeck process

had a similar property, ��m�n� � cm�n. For the data records of the MOZAIC flights, an expo-

nential covariance function implies that two subsequent measurements are autocorrelated with

a correlation coefficient R��r� � exp���r	rc�, see TAUBENHEIM (1969). With �r � � km

for the data in 4 s resolution and rc � ���� km, this means R��r� � �����. Measurements

n�r apart are autocorrelated with a coefficient R�n�r� � exp��n�r	rc� � R��r�n. The

MOZAIC data used in Part 1 had 1 min resolution or about 15 km, i.e. n � ��. Two subsequent

data in the 1 min data are therefore correlated with a coefficient of 0.985, close to the value of

c used in our Monte Carlo simulation.

From its construction, it is clear that our discrete Ornstein–Uhlenbeck process is a non-

stationary process with stationary increments to be drawn from i.i.d. distributions, and the

changing background state makes the process itself non–stationary. The same classification

holds for the MOZAIC time series of �. The analysis of the second–order structure function

suggested a value of 
� � � which implies an exponent in the energy spectrum of � � 
. In any

case, � � � � �, which is characteristic of non–stationary processes with stationary increments

(DAVIS et al., 1994), a property that is common to many geophysical fields.

Several other models have been developed to describe and explain the emergence of non–

Gaussian statistics in turbulence, for instance, those by SHE et al. (1988, 1991), SHE (1991a,b),

SHE and ORSZAG (1991) or MILLER et al. (1995) and LI and MENEVEAU (2005). These
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models tackle the problem from a small–scale turbulence point of view, but they also start from

acknowledging the observations that

� intermittency is characterised by high–amplitude events embedded in a Gaussian back-

ground;

� deviations from Gaussianity become stronger for smaller spatial scales.

The first of these aspects is directly included in our model by the superposition of the discrete

Ornstein–Uhlenbeck process with the background parameter an and correlation parameter c.

The second item is reflected from our explanation of the ogival p.d.f.s from the data sampling

characteristics and the fact that finer sampling leads to increasing deviations from the Gaussian

shape. Taking into account the sampling procedure as well enables us to explain the ogival

shape, while the other mentioned models put their focus only on the (stretched) exponential

p.d.f.s in small–scale turbulence. However, our example of the ogival distributions in Rayleigh–

Bénard convection is clear evidence that such distributions can arise in (convective) turbulence

as well.

3.2 Physical aspects — potential sources of intermittent fluctuations

The atmosphere is an open thermodynamic system with highly variable forcing, in particular

from solar radiation above and from orographic and topographic effects below. The forcing

varies on diurnal, seasonal and longer timescales, as well as geographically due to the rela-

tive location of the sun and the non–uniform distribution of land and sea. The atmosphere

reacts in a number of large- and small–scale circulation patterns. Additionally, there are at-

mospheric tides caused by graviational interaction with both sun and moon (CHAPMAN and

MALIN, 1970; ZENG et al., 2008). Consequently, the air is never fully at rest, which always

leads to a general background of small variations of the atmospheric state variables in any one

place, in particular valid for temperature and relative humidity. However, occasionally larger

fluctuations can appear in the state variables. Fluctuations that occur only rarely in space and

time are called intermittent. Since we study the fluctuations in larger volumes that correspond to

grid cells of large–scale circulation models and not at single locations, the notion “fluctuation”

here comprises both local fluctuations caused by a physical mechanism and simple geographi-

cal variation within a grid cell, for instance caused by a large–scale gradient or by the presence
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of an air mass boundary within the cell — which by themselves are consequences of physical

processes as well. In the context of intermittency, we call fluctuations arising either from local

physical processes or from air mass boundaries (a rare event in a grid box) intermittent, but not

the variation arising from a large scale gradient in a grid cell. However, all these variations,

whether intermittent or not, must be represented by a large–scale model.

The MOZAIC aircraft (like all commercial aircraft) mostly fly on pressure levels. Hence,

flight in baroclinic zones where isotherms are tilted relative to isobars can contribute to large

temperature fluctuations (one should say variations in this case, but in the data, the varia-

tions cannot be distinguished from the fluctuations). Other sources of temperature fluctuations

that exceed the ubiquitous background fluctuations are vertical motions in stably stratified air

(i.e. gravity waves, including wave–breaking), and shear instabilities that lead to wave–like

displacement of isothermal surfaces, e.g. caused by the Kelvin–Helmholtz instability. Ice–

supersaturated regions in the midlatitudes are on average 3–4 K colder than their subsatu-

rated surroundings, while the corresponding temperature contrast is insignificant in the tropics

(GIERENS et al., 1999; SPICHTINGER et al., 2003). The average path length of a MOZAIC

aircraft through ice–supersaturated regions is 150 km, and the aircraft are about 15% of the

flight time in ice–supersaturated regions (GIERENS et al., 1997). Flight into or out of an ice–

supersaturated region therefore can cause a substantial jump in the temperature record, causing

events in the wings of the p.d.f. of �T .

Strong fluctuations of relative humidity are also expected when the tropopause is located

within a grid cell. Stratospheric air usually is relatively dry, while upper tropospheric air can

often be relatively moist, or even ice–supersaturated. On average, aircraft in the North Atlantic

flight corridor spend 40% of their time in the stratosphere (HOINKA et al., 1993). Tropopause

folds, where stratospheric air intrudes deeply into the troposphere, occur in association with jet

streams (REID and VAUGHAN, 2004). These are strong sources of RHi fluctuations. Vertical air

motions can cause RHi fluctuations, when air with high absolute humidity is lofted to regions

with predominant low absolute humidity, e.g. by deep convection (cf. WANG and SETVÁK,

2007) in environments with neutral or even unstable stratification. In stably stratified air, how-

ever, vertical air motions from waves would mainly lead to temperature fluctuations on pressure

levels. The presence of clouds in a grid cell is a source of humidity variations (certain micro-

physical processes only act within clouds) and also for temperature variations (differential radia-

tive heating/cooling and release/consumption of latent heat). The air within ice–supersaturated
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regions (both tropics and midlatitudes) is on average 1.5 to 3 times moister (in absolute hu-

midity units) than in the subsaturated environment (GIERENS et al., 1999; SPICHTINGER et al.,

2003). Hence, not only can ice–supersaturated regions produce large temperature fluctuations

in the data, but also large humidity fluctuations. Upper level fronts are further boundaries be-

tween air masses of different humidity, but the temperature variation across an upper level front

is generally weak.

Orographic waves occur mainly connected to hilly or mountainous regions, hence more of-

ten in the extratropics than the tropics. Their breaking can cause strong long–lasting turbulence

with vertical wind fluctuations of �� m s�� (WORTHINGTON, 1998). Such motions can lead

to temperature fluctuations in excess of the 1–� values given in Part 1. Assuming a typical

lapse rate of about -5 K/km, it would only take on the order of minutes for up- or downdrafts

with about 1 m s�� to produce a temperature fluctuation that belongs to the wings of the corre-

sponding p.d.f. Increased turbulence due to breaking gravity waves is often confined to shallow

atmospheric layers (less than 2 km) and in the observations reported by WORTHINGTON (1998),

they occurred on 8 out of 76 days, i.e. roughly ten percent of the time. Gravity waves do, how-

ever, not always produce fluctuations in excess of the �–values of Part 1. PAVELIN et al. (2002)

reported a case of highly localized turbulence (horizontal extent less than 40 km) with calcu-

lated gravity wave–induced amplitudes of ����� K for potential temperature (which is just the

1–� value for the temperature fluctuations in Part 1) and of ���
� ppm for the water vapour

mixing ratio, which corresponds to roughly a 1% amplitude for RHi fluctuations (at -50�C and

200 hPa).

Tropopause folds occur ubiquitously around the jet streams, with their deep specimens even

reaching down to the top of the boundary layer (REID and VAUGHAN, 2004). Since commercial

aviation from USA to Europe seek the jet stream in order to save fuel and time, it is more likely

that these aircraft regularly cross tropopause folds. Not only do the folds represent airmass

boundaries that contribute to the larger fluctuations, but they are also often display turbulence.

As the air in the fold is drier than the air underneath, convection can arise from potential insta-

bility and cause turbulence extending into the fold. Observations over Wales showed that such

turbulence events generally last 1–2 h (REID and VAUGHAN, 2004), while the tropopause folds

potentially last much longer (timescale of roughly one day). Tropopause folds certainly are a

strong source of humidity fluctuations since the stratospheric air they contain is generally much

drier than the tropospheric air in their surroundings.
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Clear–air turbulence (CAT, for a recent climatology see JAEGER and SPRENGER, 2007)

occurs often, but not exclusively, in the vicinity of the jet streams. Aside from its turbulent

velocity field, CAT regions are also candidates for large local fluctuations of temperature and

humidity. CAT can be caused by a variety of mechanisms, for instance Kelvin–Helmoltz insta-

bility (signified by a low Richarson number) occuring in the strong–shear zones of the jets, and

symmetric instability (signified by negative potential vorticity) associated with strong curvature

of the jet streams. Convective instability (signified by imaginary values of the Brunt–Väisälä

frequency) preferably occurs over the continental land masses. All the indicators of CAT show

a pronounced annual cycle with minimum number of occurrences (but not necessarily mini-

mum intensity) in the northern summer months. The temperature fluctuation p.d.f. has similar

variance in summer as in winter (see Part 1), and RHi even has stronger fluctuations in summer

than in winter. The relative frequencies for various CAT indicators considered by JAEGER and

SPRENGER (2007) are on the order of a few percent and the overall frequency of CAT is of the

same order, that is, it occurs intermittently.

Summing up the variety of processes that may lead to an intermittent signal for an aircraft

flying in the tropopause region, we see that there are three types of intermittency sources:

1. Airmass boundaries, as in particular the tropopause and tropopause folds, but also upper

level fronts, and

2. Physical mechanisms that bring air masses of different origin close together, for instance

deep convection and gravity waves. Ice–supersaturated regions and clouds are conse-

quences of vertical air motions; once they exist they might even enhance the fluctuations

already produced by the vertical motion itself;

3. Intense long–lasting turbulence, created by another variety of physical processes like

shear–induced instabilities near the jet stream. These may in turn be related to the first

two items and can contribute to the measured fluctuations.

Finally, large–scale gradients like in baroclinic zones or caused by orographic forcing from

below may be part of the fluctuations that MOZAIC aircraft detect. One could try to investigate

the proportion by which each mechanism adds to the intermittent fluctuations or over what

geographical regions which process is the most relevant (cf. JAEGER and SPRENGER, 2007),

but that would be a topic for a separate paper.
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4 Conclusions

The present study has led to the following results:

� The peculiar ogival shape of the p.d.f.s of instantaneous humidity fluctuations over vol-

umes corresponding to grid cells of large–scale models can be explained by a combi-

nation of autocorrelated fluctuations superposed unto an intermittently changing back-

ground state, and the sampling characteristics, i.e. counting and comprising only data

that belong to the same grid cell. The intermittently changing background in this model

represents traversing airmass boundaries which sometimes occur in grid–cells. These

can be introduced by the tropopause itself or by processes like deep convection, grav-

ity waves, and turbulence near the jet stream. The boundary crossings cause the tails of

the p.d.f.s. The strong peaks in the distributions signify the strong autocorrelation in the

fields.

� The peculiar ogival shape of (passive) scalar p.d.f.s has also been found in studies of

turbulence and other phenomena. In turbulence from Rayleigh–Bénard convection, the

ogival shape is related to the intermittency of both the velocity and temperature fields.

In close analogy to the atmospheric data, there are sharp passive scalar gradients across

thermal plumes causing intermittency, and fine spatial sampling being a characteristic of

direct numerical simulations.

� The autocorrelation length of the (potential) temperature field, determined from MOZAIC

data, is of the order 1000 km, that is, it corresponds to the synoptic scale. On length

scales that are typical for the spatial resolution of large–scale models, the autocorrelation

exceeds 0.5. The autocorrelation of subsequent measurements in the MOZAIC time series

exceeds 0.95.

� The power spectrum of the time series of potential temperature has an exponent of � � 
,

clearly larger than Kolmogorov’s 5/3 and smaller than the � � � of geostrophic turbu-

lence. The time series can be considered a non–stationary process with stationary incre-

ments.

� In spite of the higher–than–Gaussian tails of the fluctuation p.d.f.s of Part 1, the intermit-

tency in the MOZAIC time series is weak.
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We conclude that a Monte–Carlo simulation as presented here can be used to generate the

random deviates that future–generation statistical cloud schemes would need. Development

of this generator algorithm, and application of the results to cloud model parameterisations,

however, are beyond the scope of this work.
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Figure captions

Figure 1: Schematic of a p.d.f. with ogival shape, as classified in Part 1 of our paper, in which

such ogival distributions were found both for temperature and humidity fluctuations.

Figure 2: P.d.f.s from Monte Carlo simulations: (a) the discrete Ornstein–Uhlenbeck process

superposed onto a constant zero background (solid: c � �, dashed: c � ����) and an intermit-

tently changing background (dotted). In (b), additionally a gridcell–based sampling procedure

is simulated. Varying resolution of the underlying grid was simulated with changing the group

size N , where higher resolution corresponds to smaller group size.

Figure 3: P.d.f.s of (a) vertical velocity, (b) temperature from DNS of Rayleigh–Bénard convec-

tion in water (Pr � 
). Fluctuations inw and T have been made dimensionless by their standard

deviation �. The individual p.d.f.s have been slightly shifted vertically for clarity. Labels at the

curves denote: (a) Ra � � � ��� (including a mean horizontal flow), (b) Ra � 
�� � ���, (c)

Ra � ���, and (d) Ra � �� ���.

Figure 4: Autocorrelation functions R of potential temperature time series taken from twelve

long MOZAIC flights, mainly between Europe and East Asia, in 1997. For each month, one

flight has been selected. The twelve curves are plotted together to show the scatter in the data.

Lags have been selected as 
n km with n � N� for the determination of R (circles).

Figure 5: Second order structure functions (dashed lines, circles) of potential temperature time

series taken from 12 long MOZAIC flights in 1997, as in Fig. 4. The thick solid line is the fit by

Eq. (12). Twelve curves are depicted, one for each flight, to illustrate the variability in the data.
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Figure 6: Singularity analysis of scaling exponent Kq as a function of q, the moment order

of analysis, for twelve MOZAIC time series. The intermittency parameter C� is given as the

derivative of these curves at q � � and listed in the graph for each month. The ensemble of

twelve curves is shown to indicate the degree of variability.

Figure 7: Cumulative distribution functions of absolute fluctuations of a) RHi and b) T , plotted

on Weibull paper, together with linear fits (dashed).
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Figure 1: Schematic of a p.d.f. with ogival shape, as classified in Part 1 of our paper, in which such
ogival distributions were found both for temperature and humidity fluctuations.
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Figure 2: P.d.f.s from Monte Carlo simulations: (a) the discrete Ornstein–Uhlenbeck process superposed
onto a constant zero background (solid: c � �, dashed: c � ����) and an intermittently changing
background (dotted). In (b), additionally a gridcell–based sampling procedure is simulated. Varying
resolution of the underlying grid was simulated with changing the group size N , where higher resolution
corresponds to smaller group size.
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a)

b)

Figure 3: P.d.f.s of (a) vertical velocity, (b) temperature from DNS of Rayleigh–Bénard convection in
water (Pr � �). Fluctuations in w and T have been made dimensionless by their standard deviation
�. The individual p.d.f.s have been slightly shifted vertically for clarity. Labels at the curves denote:
(a) Ra � � � ��

� (including a mean horizontal flow), (b) Ra � ��� � ��
�, (c) Ra � ��

�, and (d)
Ra � �� ��

�.
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Figure 4: Autocorrelation functions R of potential temperature time series taken from twelve long
MOZAIC flights, mainly between Europe and East Asia, in 1997. For each month, one flight has been
selected. The twelve curves are plotted together to show the scatter in the data. Lags have been selected
as �n km with n � N� for the determination of R (circles).
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Figure 5: Second order structure functions (dashed lines, circles) of potential temperature time series
taken from 12 long MOZAIC flights in 1997, as in Fig. 4. The thick solid line is the fit by Eq. (12).
Twelve curves are depicted, one for each flight, to illustrate the variability in the data.
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Figure 6: Singularity analysis of scaling exponent Kq as a function of q, the moment order of analysis,
for twelve MOZAIC time series. The intermittency parameter C� is given as the derivative of these
curves at q � � and listed in the graph for each month. The ensemble of twelve curves is shown to
indicate the degree of variability.
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Figure 7: Cumulative distribution functions of absolute fluctuations of a) RHi and b) T , plotted on
Weibull paper, together with linear fits (dashed).
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