

High resolution climatology of lightning in Central Europe

Kathrin Wapler^{1,2}

¹Hans-Ertel Centre for Weather Research (HErZ) ²German Weather Service (DWD)

Objectives

- Analyse occurrence of thunderstorms in Germany (and neighbouring areas)
- Determine spatial and temporal distribution of thunderstorms
- Study lightning characteristics
- Determine thunderstorm dependence on synoptical situation

Data

- Lightning detection network LINET:
 - 2007 2012
 - 36 million strokes
 - Mapped on a 1 km * 1km grid
- Human thunderstorm observations:
 - 20 weather stations
 - 1961-now

Rhine-Main-Valley

0.0 1.0 2.0 3.0 4.0 5.0

days (> 1 stroke/km²)

nstitute for spheric Research

Spatial distribution

...

Berlin

Berlin

strokes

Mean annual number of days with >2 strokes <15km

Mean annual number of days with thunderstorm

Mean annual number of days with >2 strokes <15km

Temporal distribution

- Annual cycle (geographically varying)
- High year-to-year variability

Temporal distribution

- Annual cycle (geographically varying)
- High year-to-year variability

- Diurnal cycle
- Diurnal cycle has an annual cycle

Lightning characteristics

annual cycle of IC height

Objectives

- Analyse occurrence of thunderstorms in Germany (and neighbouring areas)
- Determine spatial and temporal distribution of thunderstorms
- Study lightning characteristics
- Determine thunderstorm dependence on synoptical situation

Synoptical classification

Wa	Anticyclonic Westerly
Wz	Cyclonic Westerly
Ws	South-Shifted Cyclonic Westerly
Ww	Maritime Westerly (Block E.Europe)
SWa	Anticyclonic South-Westerly
SWz	Cyclonic South-Westerly
NWa	Anticyclonic North-Westerly
NWz	Cyclonic North-Westerly
НМ	High over Central Europe
BM	Zonal Ridge across Central Europe
TM	Low over Central Europe
Na	Anticyclonic Northerly
Nz	Cyclonic Northerly
HNa	High Norwegian Sea, Ridge C.Europe
HNz	High Norwegian Sea, Trough C.Europe

НВ	High over the British Isles		
TrM	Trough over Central Europe		
NEa	Anticyclonic North-Easterly		
NEz	Cyclonic North-Easterly		
HFa	Scandinavian High, Ridge C.Europe		
HFz	Scandinavian High, Trough C.Europe		
HNFa	High Norw.Sea to Finland, Ridge C.Eur.		
HNFz	High Norw.Sea to Finland, Trough C.Eur.		
SEa	Anticyclonic South-Easterly		
SEz	Cyclonic South-Easterly		
Sa	Anticyclonic Southerly		
Sz	Cyclonic Southerly		
ТВ	Low over the British Isles		
TrW	Trough over Western Europe		
Ü	Transitional Days		

Following Hess and Brezowsky 1952, based on global NWP analysis

Synoptical classification

Wa	Anticyclonic Westerly	HB	High over the
	Cyclonic Westerly	TrM	Trough over Ce
Ws	South-Shifted Cyclonic Westerly	NEa	Anticyclonic N
Ww	Maritime Westerly (Block E.Europe)	NEz	Cyclonic Nor
SWa	Llow often de thunderete	rma again	runder eertein
SWz	How often do thunderstorms occur under certain		
NWa	synoptical conditions?		
NWz	→For each class calcula	ite thunde	rstorm occurrer
HM	High over Central Europe	SEa	Anticyclonic S
BM	Zonal Ridge across Central Europe	SEz	Cyclonic Sou
TM	Low over Central Europe	Sa	Anticyclonic
Na	Anticyclonic Northerly	Sz	Cyclonic S
Nz	Cyclonic Northerly	ТВ	
HNa	High Norwegian Sea, Ridge C.Europe	TrW	Trough over We
HNz	High Norwegian Sea, Trough C.Europe	Ü	Transition

		поре			
		C.Eur.			
h	nunderstorm occurrence. C.Eur.				
	SEa	Anticyclonic South-Easterly			
	SEz	Cyclonic South-Easterly			
	Sa	Anticyclonic Southerly			
		Cyclonic Southerly			
		Low over the British Isles			
		Trough over Western Europe			
	Ü	Transitional Days			

Following Hess and Brezowsky 1952, based on global NWP analysis

T (Central Europe low pressure)

summer (AMJJAS) 2007-2012

H (Central Europe high pressure)

summer (AMJJAS) 2007-2012

Courtesy: Paul James

Summary

Outlook

- Extension of synoptical pattern statistics
- thunderstorm characteristics depending on synoptical situation

More information

Wapler (2013): High-resolution climatology of lightning characteristics within Central Europe, submitted to MAP.

Wapler and Frank (2013): Analysis of lightning flash characteristics in Central Europe, **Poster 92**.

Wapler, Trömel, Bick, Deneke, Diederich, Horvath, Senf, Simmer, Simon (2013): The OASE project, **Poster 134**.

Mean annual number of strokes per km²

Mean annual number of days with > 1 stroke per km²

Mean annual number of days with >2 strokes <15km

T (Central Europe low pressure)

summer (AMJJAS) 2007-2012

Z (general cyclonic)

summer (AMJJAS) 2007-2012

0.3

H (Central Europe high pressure)

summer (AMJJAS) 2007-2012