High resolution climatology of lightning in Central Europe

Kathrin Wapler1,2

1Hans-Ertel Centre for Weather Research (HErZ)
2German Weather Service (DWD)
Objectives

• Analyse occurrence of thunderstorms in Germany (and neighbouring areas)

• Determine spatial and temporal distribution of thunderstorms

• Study lightning characteristics

• Determine thunderstorm dependence on synoptical situation
Data

- Lightning detection network LINET:
 - 2007 – 2012
 - 36 million strokes
 - Mapped on a 1 km * 1km grid

- Human thunderstorm observations:
 - 20 weather stations
 - 1961-now
Spatial distribution

Rhine-Main-Valley

Vogelsberg
Rhoen
Main Valley
Spessart
Rhine Valley
Odenwald

200 km

200 km

height (m)

0 250 500 750 1000
Spatial distribution

Rhine-Main-Valley

days (> 1 stroke/km²)
Spatial distribution

Rhine-Main-Valley

- Vogelsberg
- Rhoen
- Main Valley
- Spessart
- Odenwald
- Rhine Valley

days (> 1 stroke/km²)

Berlin

strokes

0.0 1.0 2.0 3.0 4.0 5.0

0.0 6.0 12.0 18.0 24.0 30.0
Spatial distribution

Berlin

strokes

0.0 6.0 12.0 18.0 24.0 30.0
Spatial distribution

Mean annual number of days with >2 strokes <15km
Spatial distribution

Mean annual number of days with thunderstorm

Mean annual number of days with >2 strokes <15km
Temporal distribution

annual cycle

- Annual cycle (geographically varying)
- High year-to-year variability
Temporal distribution

- Annual cycle (geographically varying)
- High year-to-year variability

Annual cycle graph:
- Mean
- Symbols: individual years

Diurnal cycle:
- Winter
- Spring
- Summer
- Autumn

Diurnal cycle has an annual cycle
Lightning characteristics

• annual cycle of IC height
Objectives

• Analyse occurrence of thunderstorms in Germany (and neighbouring areas)

• Determine spatial and temporal distribution of thunderstorms

• Study lightning characteristics

• Determine thunderstorm dependence on synoptical situation
Synoptical classification

Following Hess and Brezowsky 1952, based on global NWP analysis
Synoptical classification

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wa</td>
<td>Anticyclonic Westerly</td>
</tr>
<tr>
<td>Wz</td>
<td>Cyclonic Westerly</td>
</tr>
<tr>
<td>Ws</td>
<td>South-Shifted Cyclonic Westerly</td>
</tr>
<tr>
<td>Ww</td>
<td>Maritime Westerly (Block E. Europe)</td>
</tr>
<tr>
<td>SWa</td>
<td>South-Westly European Anticyclone</td>
</tr>
<tr>
<td>SWz</td>
<td>South-Westly European Cyclone</td>
</tr>
<tr>
<td>NWa</td>
<td>North-Westly European Anticyclone</td>
</tr>
<tr>
<td>NWz</td>
<td>North-Westly European Cyclone</td>
</tr>
<tr>
<td>HM</td>
<td>High over Central Europe</td>
</tr>
<tr>
<td>BM</td>
<td>Zonal Ridge across Central Europe</td>
</tr>
<tr>
<td>TM</td>
<td>Low over Central Europe</td>
</tr>
<tr>
<td>Na</td>
<td>Anticyclonic Northerly</td>
</tr>
<tr>
<td>Nz</td>
<td>Cyclonic Northerly</td>
</tr>
<tr>
<td>HNa</td>
<td>High Norwegian Sea, Ridge C. Europe</td>
</tr>
<tr>
<td>HNz</td>
<td>High Norwegian Sea, Trough C. Europe</td>
</tr>
<tr>
<td>HB</td>
<td>High over the British Isles</td>
</tr>
<tr>
<td>TrM</td>
<td>Trough over Central Europe</td>
</tr>
<tr>
<td>NEa</td>
<td>Anticyclonic North-Eastery</td>
</tr>
<tr>
<td>NEz</td>
<td>Cyclonic North-Eastery</td>
</tr>
<tr>
<td>SEa</td>
<td>Anticyclonic South-Eastery</td>
</tr>
<tr>
<td>SEz</td>
<td>Cyclonic South-Eastery</td>
</tr>
<tr>
<td>Sa</td>
<td>Anticyclonic Southerly</td>
</tr>
<tr>
<td>Sz</td>
<td>Cyclonic Southerly</td>
</tr>
<tr>
<td>TB</td>
<td>Low over the British Isles</td>
</tr>
<tr>
<td>TrW</td>
<td>Trough over Western Europe</td>
</tr>
<tr>
<td>Ü</td>
<td>Transitional Days</td>
</tr>
</tbody>
</table>

How often do thunderstorms occur under certain synoptical conditions?

→ For each class calculate thunderstorm occurrence.

Following Hess and Brezowsky 1952, based on global NWP analysis
Thunderstorm activity vs synoptic pattern

summer (AMJJAS) 2007-2012

T (Central Europe low pressure)
Thunderstorm activity vs synoptic pattern

H (Central Europe high pressure) summer (AMJJAS) 2007-2012
Thunderstorm activity vs Synoptic pattern

Example: Anticyclonic South-Easterly

Courtesy: Paul James
Summary

• Spatial distribution
• Temporal distribution
• Lightning characteristics
• Dependence on synoptical situation

Outlook

• Extension of synoptical pattern statistics
• Thunderstorm characteristics depending on synoptical situation

More information

Wapler (2013): High-resolution climatology of lightning characteristics within Central Europe, submitted to MAP.
Wapler and Frank (2013): Analysis of lightning flash characteristics in Central Europe, Poster 92.
Appendix
Spatial distribution

Mean annual number of strokes per km²
Spatial distribution

Mean annual number of days with > 1 stroke per km²
Spatial distribution

Mean annual number of days with >2 strokes <15km
Spatial distribution

Mean annual number of strokes per km²

Mean annual number of days with > 1 stroke per km²

Mean annual number of days with >2 strokes <15km
Thunderstorm activity vs synoptic pattern

T (Central Europe low pressure) summer (AMJJAS) 2007-2012
Thunderstorm activity vs synoptic pattern

Z (general cyclonic) | summer (AMJJAS) 2007-2012
Thunderstorm activity vs synoptic pattern

A (general anticyclonic)

summer (AMJJAS) 2007-2012
Thunderstorm activity vs synoptic pattern

H (Central Europe high pressure) summer (AMJJAS) 2007-2012