

Collaborative adaptive weather radar network for major metropolitan regions: The Helsinki implementation

V. Chandrasekar, Dmitri Moisseev, Roberto Cremonini, Markku Kulmala, Jarmo Koistinen, Yrjo Viisanen, Ari-Matti Harri, Heikki Pohjola Heikki Turtiainen And the full C-CASA team

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Motivation

Radar Network Solution

- Dense networks of low power, dual pol, multi-Doppler, X-band radars
- □ High spatial and temporal resolution (250m and 1 minute)
- Smart scans based on weather, user needs and radar capabilities
- Demonstrated successfully in Oklahoma, USA
- □ Well established now, also being adopted in Asia and Europe.

Tornado Tracking

Dickson

Colorado

Tornado Path as Observed by IP1 Radars 350 m above ground

S HIMPIERSE

n

Colorado

35.2	uprooted tree	uprooted tree into house Shingle damage, roof on outsunant 2009 8.15 cm large treesnapped		
35.18	eaning p	Gracement ower pole2	oor siding and roof d	
35.16	lots of trees u	N 3 5.17 prooted around hous random s Untitled Place scat ered free d N 24,15	20090514-022205.odf Z=0.75 km e82 90 90 90 90 90 90 90 90 90 90	0222 0223
⁶⁹ 85.14	33° W98.29°	Destroyed barn W98.25	20090514 022608 cdl 72-075 km 20090514 022608 cdl 72-075 km 20090514 022608 cdl 72-075 km 20090514 023508 cdl 72-07 4 20090514 023508 cdl 72-07 20090514 023509 cdl 72-07 20090514 023509 cdl 72-07 4	⁴⁷ 40.75 km 5 km ⁴⁸² □ ¹⁰ 102.35 ⁴⁸² 0.235 ⁴⁸² 0.236
35.12	Ur insultation debr	titled Placemark V s blown from house carport flipped N35.11	2009514-023796-cdi Z • • • • • • • • • • • • • • • • • • •	
35.1	ita doubl	e power poles down snapped pine tree mobile home shir N35.09	(un) V (km)	
35.08		in age USDA Farmservice of Image 2009 Digital rish galage doors dushe		
	-98.3	-98.25	X (km)	

Lon (deg)

Urban Challenge -1

- Since 2009 more than half the world lives in urban regions.
- Small area to cover (relatively) , but biggest impact on population covered
- Water economics a big problem for large cities
- Emergency management
- Costal discharge regulations during flood conditions
- Complex terrain and vulnerability

Urban Challenge-2

- High spatiotemporal observations are required in order to capture and monitor the highly localized, rapidly evolving rainfall events.
- High resolution hydrologic models have been developed for urban environments, which demand to be driven with high resolution QPE products.
- Urbanization significantly magnifies the scale and impact of floods. Both the spatial resolution and temporal resolution are critically important in monitoring urban floods and flash floods.

QPE Sensing Aspects in a network

- Spatial resolution: mean cross-range resolution ~ 500 m
- □ Temporal resolution: DCAS closed-loop scan @ 1 min update
- Beam height: < 1 km; advanced clutter suppression filter</p>
- Dual-polarization technology: adaptive K_{dp} estimation

QPE Algorithm: Adaptive K_{dp}

- \Box K_{dp}, as the derivative of Φ_{dp} , can be very noisy.
- □ Adaptive estimation:
 - Estimate over longer spatial scales in light rain region
 - Estimate over shorter spatial scale in heavy rain region
- Network Advantage: The data volume from radar differs on different propagation path, mainly depending on the cross-beam gradients.
- Network Composition: "Favorable" K_{dp} is chosen according to the quality metric of K_{dp} estimation.

Validation Study

- Gauge comparison was investigated to evaluate the QPE system
- USDA ARS Micronet A rain gauge network located at the center of the IP1 test bed

Source: http://ars.mesonet.org

Little Washita

Watershed size: 611 km² Mean annual precipitation: 760 mm Gauge network: 20 tip-bucket stations

SAMPLE PRODUCTS AND PERFORMANCE EVALUATION RESULTS Real-time rainfall products

The rainfall products of QPE system include:

- the instantaneous rainfall maps
- hourly rainfall accumulation maps
- Point-wise line traces for diagnostic purposes for comparison against gauges
- Evaluation Scores for 5-, 10-, 15-, 20-, 30-min rainfall estimation

Following are sample products from QPE system.

SAMPLE PRODUCTS AND PERFORMANCE EVALUATION RESULTS (CONT.) Sample Products: Hourly Rainfall Map

Hourly Rainfall Accumulation UTC:20090324-014014 mm 35 50 45 34.9 40 35 Latitude (Degrees) 34.8 30 25 34.7 20 15 34.6 10 5 34.5 -98.5 -98.4 -98.3 -98.2 -98.1 -98 Longitude (Degrees)

Regional hourly-rainfall map of the storm event on March 24, 2009

Sample Products: Hourly Rainfall Map---just another case

Regional hourly-rainfall map of the storm event on May 20, 2011

Sample Products: Point-wise line traces for 5-min rainfall

5-minute rainfall point wise trace against gauges of June 14, 2010 event (a) at the location of gauge 121 (Latitude: 34.9586, Longitude: -97.8986) (b) at the location of gauge 154 (Latitude: 34.8553, Longitude: -98.1369)

Sample Products: Point-wise line traces for 15-min rainfall

15-minute rainfall point wise trace against gauges of June 14, 2010 event (a) at the location of gauge 121 (Latitude: 34.9586, Longitude: -97.8986) (b) at the location of gauge 154 (Latitude: 34.8553, Longitude: -98.1369)

Sample Products: Point-wise line traces for 30-min rainfall

30-minute rainfall point wise trace against gauges of June 14, 2010 event (a) at the location of gauge 121 (Latitude: 34.9586, Longitude: -97.8986) (b) at the location of gauge 154 (Latitude: 34.8553, Longitude: -98.1369)

Evaluation Results

20 precipitation events passing over the Little Washita gauge network during past 3 years (2009-2011) are analyzed and evaluation metrics are computed as follows,

Rainfall Product	NSE
Instantaneous Rainfall Rate	47%
5-minute Rainfall Estimates	39%
10-minute Rainfall Estimates	34%
15-minute Rainfall Estimates	31%
20-minute Rainfall Estimates	30%
30-minute Rainfall Estimates	27%
60-minute Rainfall Estimates	23 %

DFW: A Vibrant, Growing Metrople

2010 CENSUS RESULTS

POPULATION CHANGE BY COUNTY: 2000-2010

- North Central Texas Council of Governments
- Fort Worth WFO
- Emergency Management
- Storm water managers
 - Surface transportation Arena Events
- Airports
- Interior Port (Ft. Worth
- Utilities
- Media
- Corporate HQ's

Urban Test Beds

- CASA end-to-end benefits in a densely populated urban environment
- Hazards: urban flash floods, hail, ice, high winds, tornadoes.
- Networks-of-Networks: CASA radars in heterogeneous sensor networks: architecture, products, forecaster decision making
- Model for local, private, federal participation and ownership of urban radar networks.
- Platform for collaboration among CASA researchers and industry partners.

Dallas-Fort Worth Urban Demonstration Network Research activities:

- Urban flash flood and hydrology sensing
- Hydrometeor identification
- Low level wind sensing
- Network of Networks demonstration
- Forecast, decision making and impacts

etc...

layout ecsitized radars (they were CASA IP1 radars)

Dallas-Fort Worth Urban Demonstration Network

Goals:

- To demonstrate the value of DCAS X-band radar networks in Urban environment.
- To provide warnings and forecasts for a range of public and private decision-makers that result in measureable benefit for public safety and the economy. Urban flash flood and hydrology sensing
- Hydrometeor identification Low level wind sensing

Tentative layout of 8 X-band radars in DFW area

ECSS 2013

Benefits of CASA for Urban Severe Weather Warning

- Users of data Emergency Managers, Forecasters are integral to the development of the system.
- Neighborhood-scale data...How decisions are made in Emergency Management
 - Fined scale data
 - Low to the ground
- Can we decrease warning sizes and reduce false alarms?

14 Doppler Radars

Research/operation weather radars concentrate in the Tokyo Metropolitan Area: X-NET(5 X-band MP radars and 3 Doppler radars), two X-band MP radars of River Bureau, MRI C-band MP radar and 3 JMA C-band operational Doppler radars.

Dopple **9** gadar

Courtesy Dr Maki and Dr Shimizu M. Maki of NIED and X-NET Group

The urban networks are complex systems

- The urban network are a complex system of technology, environment, built infrastructure and the society.
- Smart urban systems should take the, "end to end system", into consideration
- Now that the advantages of X band networks have been demonstrated we are starting to explore other frequency systems.

C band alternative

There is a large C band network around the world that is already paid for.

Can we build new networks for urban regions anchored around existing systems?

□ C band is an excellent compromise between S and X.

□ C band industry is mature and well developed.

Can we reduce the number of radars by moving to C band and still be effective.

C-band collaborative radar networks Advantages and compromises

- □ Technology and installation issues...
- Attenuation Directly scales with frequency
- Range velocity ambiguity
- Social foot print (C band fairly high, X band low –S band extremely high).
- Coverage to large Metro Regions Megacities-Example Shanghai , Mumbai, Rio?
- Develop a C band collaborative adaptive demonstration network leveraging exiting assets.

Impact of Attenuation

Statistics evaluated from CO/ Kansas and Oklahoma at X and C band for Spring Climatology

Range/ Doppler Ambiguity

Special Mitigation efforts are needed.
Need similar technical solutions.
Implications on signal processing

Range Velocity Ambiguity

• There is always a trade off between maximum unambiguous velocity and maximum unambiguous range

Statement on Minimum detectable signal

$$\min(Z_e) = \frac{1}{\pi^5 |K_w|^2} \left(\frac{2}{cT_0}\right) \left[\frac{(4\pi)^3 l_{wg}^2}{P_t G_0^2}\right] \left(\frac{8\ln 2}{\pi \theta_1 \phi_1}\right) \lambda^2 r_0^2 (kTB); \qquad \lambda = \frac{c}{f}$$

Minimum detectable reflectivity

 \propto 1/(Transmit power, Frequency and antenna gain)

Design/Cost Impacts

KING City – C band Peak power: 250 kW, Range resolution: 125m, Antenna diameter: 6.1 m, Gain: 49.2 dB, Beam width: 0.62 deg, Noise floor:-110 dBm (assumed) D/λ : 113.9

CHILL – S band Peak power: 1 MW, Range resolution: 150m, Antenna diameter: 8.5 m, Gain: 43 dB, Beam width: 1.1 deg, Noise floor:-113 dBm D/λ: 77.3

Ku

Intrinsic reflectivity: horizontal $(Z_h: dBZ)$

Ku

Attenuated reflectivity: horizontal $(Z_h: dBZ)$

Intrinsic return power: horizontal (P_{hh}: dBm)

- -Beam width: 1deg,
- Range resolution: 150m

Ku PT= 5 kW

> Attenuated return power: horizontal (P_{hh}: dBm)

Ku

Differential Propagation Phase (degree). Higher numbers good for rainfall measurement.

The greater Yangtze River Delta metropolitan region

- The urban build-up in the Yangtze River Delta has given rise what may be the largest concentration of adjacent metropolitan areas in the world.
- It covers an area of 99.6 thousand square kilometers and is home to over 105 million people as of 2010.
- http://en.wikipedia.org/wiki/Yangtze_River_Delta

Yangtze River Delta₄

- Maximum range of each radar is 40 km
- Radar Locations:
 - Radar 1: 31.672N, 121.385E
 - Radar 2: 31.531N, 121.673E
 - Radar 3: 31.454N, 121.343E
 - Radar 4: 31.200N, 121.286E
 - Radar 5: 31.266N, 121.585E
 - Radar 6: 30.952N, 121.345E
 - Radar 7: 30.989N, 121.655E

- 4 C-band radar overlay in Shanghai
- Maximum range of each radar is 60 km.

Radar Locations: Radar 1: 31.455N, 121.9E Radar 2: 30.9N, 121.9E Radar 3: 30.8N, 121.3E Radar 4: 31.3N, 121.35E

46

- Leverage existing assets
- Pathfinder demonstration for megacity implementation; example
- Mumbai, Sao Paolo, Rio, Shanghai, Beijing, Ho Chi Minh City, Ankara
- Multi-sector usage, Aviation, emergency management, water management (big story), transportation
- Central role in smart and sustainable cities

Helsinki C band radar network testbed (details to follow)

Summary

- Urban radar networks as a multi-user platform is already taking hold in many cities (European program, Japan, DFW)
- Networked Dual-polarization radar observations, especially the specific differential propagation phase, has been used successfully for flood monitoring/ mitigation
- Radar network very useful to track severe weather at high spatial and temporal scale.
- Requires large number of X band radars
- C-band alternative is proposed based on coverage, cost benefit and attenuation considerations.
- Helsinki will have the first such network

Networked QPE Methodology

Dual-polarization Rainfall Algorithm

QPE system is Kdp-based.

The instantaneous rainfall rate can be related to drop size distribution (DSD) as,

 $R = 0.6\pi \times 10^{-3} \int v(D) D^3 N(D) dD$

where D is the equivalent drop size in diameter (mm) N(D) is DSD v(D) is the terminal fall speed of raindrop (m/s)

The specific differential propagation phase (Kdp) can be related to DSD as,

$$Kdp = \frac{\pi^2}{6\lambda} C \int (1-r) D^3 N(D) dD$$

where C is a constant r is the axis ratio of raindrops λ is the wavelength

Rainfall relation in CASA's IP1 test bed: **R**=18.15Kdp10.791

50

 $R = aKdp^{b}$

CASA QPE Methodology (cont.)

Evaluation Metrics

The performance evaluation include score computations of the mean bias, the normalized mean bias, and the normalized standard error (NSE), which are defined as,

Mean bias: $\langle e \rangle = \langle R \downarrow R - R \downarrow G \rangle$

Normalized Mean Bias: $\langle e \rangle \downarrow N \uparrow = \langle R \downarrow R - R \downarrow G \rangle / \langle R \downarrow G \rangle$

NSE: $NSE = <|R\downarrow R - R\downarrow G| > / < R\downarrow G >$

CASA QPE Methodology (cont.)

More...

- Only Kdp's from the 2.0 degree elevation scan are used when computing the rainfall rate
 - the beamwidth of CASA radars is about 1.8 degree
 - at 2 degree elevation angle, the clutter would come from sidelobes and its impact would be minimal after clutter filtering
 - all of the measurements from the network can be regarded as being taken simultaneously because the 2 degree scan can be completed within 20s
- An adaptive algorithm was developed to estimate Kdp (Wang and Chandrasekar 2009), which is implemented in CASA QPE system.
- The Kdp field from all the four radar nodes will be fused before the rainfall conversion algorithm is applied.
 - The Kdp field is merged rather than the rainfall field
 - The composite Kdp estimates are constructed based on the quality of the individual Kdp tease and the network's QPE products in this project. 52 52

