

Areal rainfall statistics based on radar observations

Edouard Goudenhoofdt and Laurent Delobbe Royal Meteorological Institute of Belgium (RMIB)

June 3, 2013, European Conference on Severe Storms

RMIB operates a C-band radar since 2001

- Single-polarisation
- Doppler filtering (clutter)
- Located 600 m asl, range of 240 km
- ► 5-elevation every 5 min (during 2 min)
- Resolution: 1° in azimuth, 250 m in range

Quantitative precipitation estimates

- ► PCAPPI 800 m above radar level
- $Z = 200 R^{1.6}$
- ► Hail: $Z > 53 \, dBZ \rightarrow 53 \, dBZ$ (75 mm/h)
- Cartesian grid 500 m resolution.
- Accumulation by linear interpolation.

Quantitative precipitation estimates

- ► PCAPPI 800 m above radar level
- $Z = 200 R^{1.6}$
- ► Hail: $Z > 53 \, dBZ \rightarrow 53 \, dBZ$ (75 mm/h)
- Cartesian grid 500 m resolution.
- Accumulation by linear interpolation.

To be validated: clutter mitigation and profile correction.

Merging and verification with dense raingauge networks.

- hourly automatic raingauge network (blue)
- ▶ $1E^6$ scale difference !
- mean field bias : simple and robust
 - max range 120 km
 - min value 0.1 mm
 - min 10 valid pairs

Merging and verification with dense raingauge networks.

- hourly automatic raingauge network (blue)
- ▶ $1E^6$ scale difference !
- mean field bias : simple and robust
 - max range 120 km
 - min value 0.1 mm
 - min 10 valid pairs

A 8-year verification reveals relatively good accuracy.

Mean hourly rainfall depth 2005-2012

- unconditional mean (dry periods are included)
- minimum 0.07 mm (600 mm/year) in the plains
- ➤ maximum 0.14 mm (1200 mm/year) in the hills

Mean hourly rainfall depth 2005-2012

- unconditional mean (dry periods are included)
- minimum 0.07 mm (600 mm/year) in the plains
- maximum 0.14 mm (1200 mm/year) in the hills
- clear correlation with topography (clutter effect?)

Mean hourly rainfall depth 2005-2012

- unconditional mean (dry periods are included)
- minimum 0.07 mm (600 mm/year) in the plains
- maximum 0.14 mm (1200 mm/year) in the hills
- clear correlation with topography (clutter effect?)

Those results are consistent with raingauge climatology.

Max hourly rainfall depth 2005-2012

- High small scale variations.
- No significant large scale trend.
- Slightly more max in South-East.

Max hourly rainfall depth 2005-2012

- High small scale variations.
- No significant large scale trend.
- Slightly more max in South-East.

Highest values are due to stationary cells and/or hail.

Probability of hourly rainfall (1 mm).

- ranges from 2% to 4%
- positive effect of topography

Probability of hourly rainfall (1 mm).

- ranges from 2% to 4%
- positive effect of topography

Highly correlated with mean hourly rainfall

Probability of rainfall exceeding 10 mm.

- ➤ ranges from 0.02 % to 0.06 %
- less effect of topography
- higher probabilitySouth-East of radar

Probability of rainfall exceeding 10 mm.

- ranges from 0.02 % to 0.06 %
- less effect of topography
- higher probability South-East of radar

Partially correlated with max hourly rainfall

Exceedance probability of four different river catchment.

Exceedance probability of four different river catchment.

- catchment of different size
- smooth and logarithmic behavior
- smallest catchmentmax 20 mm
 - largest catchment : max 8 mm

Exceedance probability of four different river catchment.

- catchment of different size
- smooth and logarithmic behavior
- smallest catchmentmax 20 mm
- largest catchment : max 8 mm

Computation of return periods is limited (8 years).

Exceedance probability of adjacent equal-area squares.

- simple approximation of a catchment
- distance less than 100 km for best accuracy
- space and time stationarity
- independence between windows?

Exceedance probability of adjacent equal-area squares.

- simple approximation of a catchment
- distance less than 100 km for best accuracy
- space and time stationarity
- independence between windows?

Exceedance probability of adjacent equal-area squares.

- simple approximation of a catchment
- distance less than 100 km for best accuracy
- space and time stationarity
- independence between windows?

Possibility to compute longer return periods? (theoretically 8 years x number of windows)

Conclusions

- Weather radar provide good areal rainfall estimates.
- Areal rainfall exceedance probability can be computed.
- Important application to river catchment.
- Longer return periods could be computed using a larger domain.

Outlook

- Best single radar QPE reanalysis (almost ready)
- Radar composite to mitigate attenuation and beam broadening
- ► Effect of rainfall depth duration
- Proof using a proper theoretical framework