

A new stochastic event catalogue for hail in Europe

HJ Punge, KIT, INSTITUTE FOR METEOROLOGY AND CLIMATE RESEARCH (IMK-TRO), WILLIS RESEARCH NETWORK; K Bedka, SSAI; D Stephenson, U Exeter; M Kunz, KIT; M Puskeiler, KIT; A Werner, Willis Re

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Hail risk in Europe

- Hail causes a significant part of weather-related damage in most of Europe
- Hail frequency and severity are of high interest for insurance business, public authorities
- Existing investigations of hail risk generally **focus on individual countries** or regions

=> co-operation with insurance broker Willis

to develop Pan-European Hail model

Jetworl

Contact: punge@kit.edu

The "Willis hail model"

Unique Hail Model for Europe

- 40 countries explicitly modelled
- country-specific vulnerability curves
- hazard component at KIT
- damage component at Willis

- hail is usually not covered by meteorological station network
- point observations + damage data from insurances are most important validation data sources

an-European Hail Model v1.0

- radar networks and satellite-based remote sensing can identify situations where hail is very likely.

Overhooting Cloud Tops

- Hail forms in strong thunderstorms

 Need strong updraught to keep hail in cloud

 Air in updraught passes beyond tropopause

- Low cloud top temperatures identified in satellite imagery

Meteosat (MSG) seviri instrument cloudtop temperatures, 25 June 2009, 10h, 11h, 12, 13h Bedka, Atm. Res. 2011

Network

Historic events

Overshooting top data:

- from MSG SEVIRI, IRW texture brightness temperature
- 1 image / 15 minutes
- time & center location
- T_{min} & ΔT to surroundings
- 2004 2011
- 30°N 65°N, 10°W 40°E

Network

Historic event set

45599 events in 8 years

Remember: **OT events serve as a proxy** for severe convective storms

Event count is high compared to number of hail events

But: best use of available data

Network

Contact: punge@kit.edu

Stochastic description – frequency, monthly distribution

In the model, statistics are computed on a $2.5^{\circ}x1.5^{\circ}$ grid, rolling in steps of 0.5° \rightarrow account for regional variability.

Frequency: Assume Poisson distribution.

Annual cycle: Single-mode or bimodal normal distribution

Jetwor

Histogram of event centroids

Contact: punge@kit.edu

Distribution of stochastic event centroids

6.0002

10.0004

0.0005

4.001 0.004 0.007 0.01 0.01 0.01 0.11 0.02 0.45 0.90

Network

Contact: punge@kit.edu

Stochastic description - intensity

Problem:

Need hail size as intensity measure, have OT temperature.

Solution:

1. Maximum hailstone size distribution from ESWD.

- apply clustering algorithm as for OTs
- fit exponential distribution
- extrapolate to small hail (d_{max} = 2.0-0.7 cm)

2. Use correlation Tmin – length – width in random

Correlation of event properties	Width	Min. temperature / Max. hail size
Length	0.83	0.37
Min. temperature/ Max. hail size	0.34	

Contact: punge@kit.edu

Stochastic event set

- N = 1.05 10⁶ random events
- 3 correlated sets of random numbers (length-width-intensity)
- random numbers for orientation and month

Contact: punge@kit.edu 7th European conference on severe storms, Helsinki, 2 June 2013

Stochastic event set

- N = 1.05 10⁶ random events
- 3 correlated sets of random numbers (length-width-intensity)
- random numbers for orientation and month

Footprint construction

- Hailstone size d is a function of position vs event centre
- max. hail size $\mathbf{d}_{_{\text{max}}}$ in the center
- Resolution 0.1°
- Retain points with d > 0.7 cm

Gen. footprints >10cm. >0.062953dea. 0.015x0.009dea

Contact: punge@kit.edu

Stochastic event footprint density

-9°-6°-3°0° 6° 9° 12° 15° 18° 21° 24° 27° 30° 33° 36° 39° 3°

Researc

Network

= Number of hail occurrences within 11km x 11km box, over reference period (to be defined)

Contact: punge@kit.edu

7th European conference on severe storms, Helsinki, 2 June 2013

0

The hail season

60° 48°

Carlsruhe Institute of Technolog

7th European conference on severe storms, Helsinki, 2 June 2013