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Introduction

* Baroclinic generation of horizontal vorticity (Vp x VP) implicated in vorticity budget
of low-level mesocyclone by a number of numerical studies (e.g., Klemp and Rotunno
1983; Rotunno and Klemp 1983; Davies-Jones and Brooks 1993; Wicker and
Wilhelmson 1995)

* Issue: zones for baroclinic vorticity production are not ubiquitous across simulations,
can be narrow and transient (e.g., Beck and Weiss 2013 (below))
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Introduction

* Baroclinic generation of horizontal vorticity (Vo x VP) implicated in vorticity budget
of low-level mesocyclone by a number of numerical studies (e.g., Klemp and Rotunno

1983; Rotunno and Klemp 1983; Davies-Jones and Brooks 1993; Wicker and
Wilhelmson 1995)

* Issue #1: cold pool required for baroclinic vorticity generation, but also dictates that
many parcels entering updraft region have elevated level of free convection
(common mechanism for tornado failure)

* Issue #2: zones for baroclinic vorticity production are not ubiquitous across
simulations, can be narrow and transient (e.g., Beck and Weiss 2013 (below))
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Forward/Left Flank Baroclinic Zones
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Numerous transient
baroclinic zones develop
and traverse the left side
of the updraft

Vorticity budget reveals
many of these zones are
relevant to low-level

mesocyclone




Introduction

e Issue #2: Limited observational mapping of thermodynamics on entire storm scale

Objectives of StickNet during VORTEX2

* Map spatio-temporal variability in storm-scale buoyancy
* Diagnose impacts on low-level vertical vorticity
* Verify numerically simulated cold pools




StickNet Analysis Methodology

StickNet data analysis

— (Ié)ata quality controlled and debiased according to mass test the previous
ay

— Time-to-space conversion - motion determined at time low-level
mesocyclone passes through the StickNet array

— Objectively analyzed with isotropic two-pass Barnes filter
« 500 m grid spacing
« v=0.1,k =(1.33 Ay)? Ay = along-deployment line station spacing

Mobile radar data moments subject to separate Barnes filter

Analyses centered on objectively determined maximum in azimuthal
shear of radial velocity

— Aggregate from 1-10 km diameter

— Origin (0,0) of all analyses set to this position ¥
0, calculated as by Bolton (1980)

Base state determined by (Dumas/Bowlegs) observation 2 hr before
updraft passage — just ahead of anvil shadow

Composite analyses produced



18 May 2010 Deployment Overview

Long-lived, weakly tornadic supercell
Two StickNet arrays deployed

#1 — US-287 north/south from Dumas, TX

Weak tornadoes reported near and west of
Dumas

#2 — FM 1060 north/south between Dumas
and Stinnett, TX
Non-tornadic, strong low-level mesocyclone
Coarse deployments each cover ~30-40 km
swath, with nested fine array centered near
low-level mesocyclone
Town of Dumas interferes with deployment #1
Significant hail damages a few StickNet
probes, particularly in deployment #2
Hail cover is substantial at time of probe pickup
(tennis balls at +1 hr), hail fog
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18 May 2010 StickNet Deployments

55555

KAMA WSR-88D
0.5 deg

n . | reflectivity with
StickNet obs
2233-0031 UTC,
18-19 May 2010
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* Winds near forward-flank reflectivity gradient (FFRG) in WT case more consistent with
traditional notion of a forward-flank gust front (relevance to baroclinity?)
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P5 Theta-v (2312-2320 UTC, 18 May 2010)
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May 2010 (Seminole, OK)
Deployment Overview
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of rapidly moving tornadic supercells

« 1.25 StickNet arrays deployed
#1 — Aborted attempt along US-177 (longitude of Tecumseh, OK)

#2 — 10-
EF-

probe array along US-377 (longitude of Seminole, OK)
3 tornado propagates through deployment



10 May 2010 StickNet Deployments
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Composite Profiles — Dumas (2) + Seminole
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6, Difference Profiles
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* Gradients related to deficits in forward flank are bifurcated
- (Longitudinal) gradient steady within core, max deficits rearward of highest Z
- Gradient strengthens near FFRG

* FFRG 6, gradient tends to be stronger for the tornadic cases in this study



6, Difference Profiles
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* @,/ gradient tends to be stronger through FFRG and left flank for weakly tornadic case
(compared to non-tornadic sample with similar environment)

* However, 6, gradients and deficits are weaker throughout these critical zones in
strongly-tornadic (Seminole) case



Conclusions

Baroclinic vorticity appears to contribute to the low-level
mesocyclone in the examined cases

— Composites of 6, reveal a bifurcated distribution related to the
position of the precipitation core and the FFRG

» Baroclinic zones located where previous studies have identified
trajectories relevant to the low-level mesocyclone / tornado

* In comparing two samples with a similar environment (Dumas), 6,
gradients are stronger throughout the FFRG and left flank for the weakly
tornadic deployment

» However, much weaker 6, gradients (and deficits overall) throughout the
strongly tornadic (Seminole) storm highlight the principal importance of
buoyancy

— Varied kinematic presentation along FFRG

* These cases reveal stronger confluence along FFRG for tornadic
deployments

* Confluence appears consistent with distribution of pressure and, to some
degree, latitudinal gradients of 6,

This work is supported by NSF Grant AGS-0800542



Conclusions

* Baroclinic vorticity appears to contribute to the low-level mesocyclone in

the examined cases
— Composites of 6, reveal a bifurcated distribution related to the position of the
precipitation core and the FFRG
* Baroclinic zones located where previous studies have identified trajectories
relevant to the low-level mesocyclone / tornado

* In comparing two samples with a similar environment (Dumas), 6, gradients are
stronger throughout the FFRG and left flank for the weakly tornadic deployment

» However, much weaker 6, gradients (and deficits overall) throughout the strongly

tornadic (Seminole) storm highlight the principal importance of buoyancy
— Varied kinematic presentation along FFRG

* These cases reveal stronger confluence along FFRG for tornadic deployments

» Confluence appears consistent with distribution of pressure and, to some degree,
latitudinal gradients of 6,

e Baroclinic zones can locally have vorticity tendency comparable to that
indicated in recent simulations (e.g., Beck and Weiss 2013)

— Magnitudes are comparable in isolated zones of <=1 km width, mostly to
northwest of low-level mesocyclone
— Strongest tendency seen for probes affected by hailfall (hailfall locally

influences thermodynamic deficits; impact on vorticity budget?)
This work is supported by NSF Grant AGS-0800542



S
o

w
o

w
o

n
;]

n
o

—_
m
T

Y-Distance (km)

—_
o
T

-20 -15 -10 -5 0 5 10 15
X-Distance (km)

Contour: 0 dBZ DOWSE 2.0 deg reflectivity, 2330 UTC
Colored: StickNet 6, (K), 18 May 2010, 2305-2355 UTC

Deployment #1
(weakly tornadic)

Notes:
* Some influence of hailfall on deficits

Y-Distance (km)

25+

20+

15+

—_
o
T

[6,]
T

(=)
T

10+

-15 -10 -5 0 5 10 15
X-Distance (km)
Contour: 30 dBZ SMART-R 2.5 deg reflectivity, 0025 UTC
Colored: StickNet 6, (K), 19 May 2010, 0000-0050 UTC
Deployment #2

(non-tornadic)



Probes.0107A, 0112B 5 !

¥

22 gas Zh pos

R

KAMA WSR-88D Base Reflectivity — 19 May 2010, 0013 UTC

Notes:
*« Some influence of hailfall on deficits

Y-Distance (km)

25+

20+

15+

—_
o
T

-5
deg C

[6,]
T

(=)
T

10+

-10 -5 0 5 10 15
X-Distance (km)
Contour: 30 dBZ SMART-R 2.5 deg reflectivity, 0025 UTC

Colored: StickNet 6, (K), 19 May 2010, 0000-0050 UTC

Deployment #2
(non-tornadic)



1 05/19/2010 00:16:05 MWR_(
- = P1 Theta-v, Theta-e (0013-0024 UTC, 19 May 2010)

——_

307,5 344

307 343

306,5
342
306 |

305,5 341

305 340

304,5 339

Theta-v(K)

304 338

303,5
337
303

336




S
o

w
o

w
o

n
;]

n
o

—_
m
T

Y-Distance (km)

—_
o
T

! I I 1 I I 15
20 -15  -10 -5 0 5 10 15

X-Distance (km)

Contour: 0 dBZ DOWSE 2.0 deg reflectivity, 2330 UTC
Colored: StickNet 6, (K), 18 May 2010, 2305-2355 UTC

Deployment #1
(weakly tornadic)

Notes:

Y-Distance (km)

25+

20+

15+

—_
o
T

[6,]
T

(=)
T

10+

-15 -10 -5 0 5 10 15
X-Distance (km)
Contour: 30 dBZ SMART-R 2.5 deg reflectivity, 0025 UTC
Colored: StickNet 6, (K), 19 May 2010, 0000-0050 UTC
Deployment #2

(non-tornadic)

* Thermodynamic deficits strongest in rear of storm; deficits somewhat stronger near low-

level mesocyclone for NT case
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* Weakness in 6, deficit near FFRG in NT dep #2 (similar to Skinner et al. 2011)
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What about the magnitude of the baroclinic

zones?

X 104 Sol. Vort. Tend. and Vectors (5'2) with Trajectories #8 and #13 at 8700 s for 150 m AGL
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How do StickNet obs compare? g 00 A,

Use scaling of Klemp and Rotunno (1983), where: Aw, =~ 5 ;
an v,
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18 May 2010 (Dumas, TX) - Deployment #2 Core 6, profiles
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10 May 2010 (Seminole, OK) - Core 6, profiles

S 8 S
o s s
{
-
5 =
| :
. -
| 33
5
%

\
1

»

+Chart Area

301

300

—12B

—8B

- 299

6B

<<
—

298
- 297
296

1 km

Solenoidal Tendency
4 g2

0~10

/

295

Z10:00:€C
20%:00-€¢
Z6T-TO'EC
Z8S'10:EC
ZLET0ET
Z9T:E0'ET
Z5S°€0-€C
ZvEv0-€C
ZET'SO'ET
2CS'S0'ET
ZTE90:EC
20T-L0-€C
26¥:L0-€C
Z8T7'80'€C
2L0'60:€C
29Y:60:€C
ZST0T-€¢
ZvO-TT-€C
ZEVTT €T
2LTTTET
ZI0'ET €T
20V €T €T
Z6T-vTEC
Z8SvT €T
ZLESTET
29T:9T:€C
25S:9T-€¢
ZvE LT ET
ZET'BTEC
Z2CS'8T €T
ZIE6TET
Z1T:0C-€¢
20S:0T:€C
26T 1TET
Z280:CT'ET
2LV TTEL
29T ETEL
250:vT €T
ZvvvTET
ZETSTET
220:9C°€¢
ZIy 9T €t
20C:LTET
26S:LTET
ZBE'BUET
ZLT6TET
29S'6C-€C

East

West



Conclusions

* Baroclinic vorticity appears to contribute to the low-level mesocyclone in
the examined cases
— Composites of 6, reveal a bifurcated distribution related to the position of the
precipitation core and the FFRG

» FFRG 6, gradients stronger for tornadic deployments (esp. 18 May 2010, Dumas,
TX)

* Baroclinic zones located where previous studies have identified trajectories
relevant to the low-level mesocyclone / tornado

— Varied kinematic presentation along FFRG
» These cases reveal stronger confluence along FFRG for tornadic deployments
* Confluence appears consistent with distribution of pressure and latitudinal

gradients of 6,
* Baroclinic zones can locally have vorticity tendency comparable to that
indicated in recent simulations (e.g., Beck and Weiss 2013)
— Magnitudes are comparable in isolated zones of <=1 km width, mostly to
northwest of low-level mesocyclone

— Strongest tendency seen for probes affected by hailfall (hailfall locally
influences thermodynamic deficits; impact on vorticity budget?)

 Thermodynamic deficits weaker overall in the significant tornado case (10
May 2010, Seminole, OK)



Moving Forward...

Expand sample, e.g., quality null cases from 2009; incorporate
mobile mesonet
Resolve any thermodynamic footprint of radar signatures (e.g.,
LRR)
Resolve relevant baroclinic zones aloft (UAS is a key player)
“BHAG” — To construct a low-level mesocyclone vorticity budget
driven by in situ and radar observations
» Challenges:
* Stationarity assumption
 Qbservation error, in situ time constants
* Liquid condensate estimation
* Accurate, resolute trajectories
» Compromise: EnKF-driven analysis constrained by
observations?
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Colored: Mean reflectivity (dBZ) (all three cases)
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Gradients related to deficits in forward flank are bifurcated

- (Longitudinal) gradient steady within core, max deficits rearward of highest Z
- Gradient strengthens near FFRG
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* G@Gradients related to deficits in forward flank are bifurcated

- (Longitudinal) gradient steady within core, max deficits rearward of highest Z
- Gradient strengthens near FFRG

FFRG 6, gradient tends to be stronger for the tornadic cases in this study



