IANIGLA CONICET U.N.CUYO GOBIERNO DE MENDOZA GOBIERNO DE SANJUAN

# Estimating the probability of convection events from statistical analysis of temperature and humidity vertical profiles, shear and helicity

Araneo Diego<sup>1, 2</sup>, Silvia Simonelli<sup>1</sup>, Federico Norte<sup>1</sup>, Jorge Santos<sup>1, 2</sup> and Alejandro de la Torre<sup>3</sup>

 <sup>1</sup> IANIGLA – Programa Regional de Meteorología, CONICET / CCT-Mendoza, Mendoza, Argentina
<sup>2</sup> Instituto de Ciencias Básicas, UNCuyo, Mendoza, Argentina
<sup>3</sup> Facultad de Ingeniera, Universidad Austral, Buenos Aires, Argentina e-mail: daraneo@mendoza-conicet.gob.ar



Instituto de Ciencias Básicas

# **OBJECTIVE**

The objective of this work is to determine the vertical profile patterns of temperature (T) and dew point (Td) for the Northern of Mendoza Province and to obtain a statistical forecast model of convection using these profiles as predictors.

### DATA

T, Td and wind data at 850, 700, 500, 400 and 300 hPa levels corresponding to 272 rawinsondes at 12 UTC from Mendoza-Aero weather station (National Weather Service) were used in order to obtain the profiles and to adjust the forecast model. The rawinsondes from October-March periods of 1987 to 1995 were used for the analysis and 371 rawinsondes from November-March periods of 2006 to 2010 were used to validate the predictions. We defined a Convection Occurrence Index (C) according to the reported observations during 24 hours following the rawinsonde observation (C=1 for convection episodes and C=0 for no convection episodes).

# METHODOLOGY

The Principal Component Analysis (PCA) was applied in order to determine the vertical profiles patterns of T and Td according to the following procedure:

 $\mathbf{X}_{[10,272]}$  Data matrix. Each column contains the T and Td values at the mentioned levels from the rawindsonde of one corresponding day.

 $\widetilde{\mathbf{X}}_{[10,272]} \qquad \begin{array}{l} \text{Deviations matrix (average rawindsonde is subtracted from each column of } \mathbf{X}) \end{array}$ 

 $\mathbf{Z} = \widetilde{\mathbf{X}}_{\mathbf{s}} \mathbf{Q}$   $\mathbf{Z}_{[10 \times 272]}$  Component Score Matrix

Them we define:  $C_{[272x1]}$  the Convection Occurrence Index Vector.

A Logistic Multiple Regression Model is performed between the response vector C and the Component Loadings  $f_j$  (columns of F) as following:

 $\hat{c}_i = \frac{e^{w_i}}{1 + e^{w_i}}$  Estimated i-th coefficient of **C** 

Where  $w_i$  is the i-th element of:

 $\mathbf{F} = \mathbf{Q} \mathbf{D}^{1/2}$   $\mathbf{F}_{[10 \times 272]}$  Component Loading Matrix

 $\widetilde{X}_{s[10,272]}$  is the matrix resulting of standardize the  $\widetilde{X}_{[10,272]}$  columns  $Q_{[272\times272]}$  and  $D_{[272\times272]}$ 

are the eigenvector and eigenvalue matrices associated to the correlation matrix for  $\widetilde{\mathbf{X}}_{[10,272]}$ 

columns. Them: 
$$\widetilde{\mathbf{X}}_{\mathbf{s}} = \mathbf{Z}_{\mathbf{s}}\mathbf{F}' \implies \widetilde{\mathbf{X}}_{\mathbf{s}_{j}} = f_{j1}\mathbf{Z}_{\mathbf{s}_{1}} + f_{j2}\mathbf{Z}_{\mathbf{s}_{2}} + \dots + f_{j10}\mathbf{Z}_{\mathbf{s}_{10}}$$

So each rawindsonde can be identified with a number not exceeding 10 loading factors  $f_{ji}$  that constitute the weight of each component *j* to represents one single rawinsonde.

$$\mathbf{w} = b_1 \mathbf{f}_1 + b_2 \mathbf{f}_2 + \dots + b_n \mathbf{f}_n + b_0 [1]_{272}$$
 or  $\mathbf{w} = \mathbf{F}\mathbf{b} + b_0 [1]_{272}$ 

and the coefficients  $b_0$ ,  $b_1$ , ...,  $b_n$  are fitted by maximum-likelihood.

Now, since: 
$$\mathbf{F} = \frac{\widetilde{\mathbf{X}}_{s}'\mathbf{Z}_{s}}{m-1} \Rightarrow \mathbf{W} = \widetilde{\mathbf{X}}_{s}'\frac{\mathbf{Z}_{s}\mathbf{b}}{m-1} + b_{0}[1]_{326}$$
  
we can define:  $\mathbf{A} = \frac{\mathbf{Z}_{s}\mathbf{b}}{m-1}$  and so  $\hat{c} = \frac{e^{\widetilde{\mathbf{X}}_{s}\cdot\mathbf{A}+b_{0}}}{1+e^{\widetilde{\mathbf{X}}_{s}\cdot\mathbf{A}+b_{0}}}$ 

Where  $\tilde{\mathbf{x}}_{s}$  is a standardized anomalous rawinsonde of one forecasting day. Also the Helicity and the Shear at several levels can be incorporated as predictors in the Logistic Multiple Regression Model.

| РС | Variance | Variance[%] | Cumulative<br>Variance<br>[%] |  |
|----|----------|-------------|-------------------------------|--|
| 1  | 78.6     | 28.9        | 28.9                          |  |
| 2  | 59.0     | 21.7        | 50.6                          |  |
| 3  | 41.5     | 15.2        | 65.8                          |  |
| 4  | 31.0     | 11.4        | 77.2                          |  |
| 5  | 25.5     | 9.4         | 86.6                          |  |
| 6  | 20.0     | 7.3         | 93.9                          |  |
| 7  | 8.1      | 3.0         | 96.9                          |  |
| 8  | 5.9      | 2.2         | 99.1                          |  |
| 9  | 2.5      | 0.9         | 100.0                         |  |

Variances correspond to the Principal Components, explained percentages and cumulative percentages.





Lev diagram for the Principal Components. The first 6 PCs are notoriously significant.

The first 6 PCs (Z) for T (red) and Td (blue) vertical profiles in direct (+) and indirect (-) modes. Real profiles (dates are indicated on each panel) correspond to the maximum and minimum value of the respective Component Loading are also shown at right of each Z panel.

| Multiple Logistic Regression Analysis |                |           |           |           |           |           |           |  |  |
|---------------------------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|--|--|
| Predictor                             | b coefficients |           |           |           |           |           |           |  |  |
|                                       | Exp. 1         | Exp. 2    | Exp. 3    | Exp. 4    | Exp. 5    | Ехр. 6    | Exp. 7    |  |  |
| b <sub>0</sub>                        | 0.745334       | -0.162803 | -0.141094 | -0.017351 | 0.012876  | -0.166606 | -0.149346 |  |  |
| F1                                    | -0.522009      |           |           | -0.576897 |           | -0.528021 |           |  |  |
| F2                                    | -3.080600      | -2.886980 | -2.822430 | -2.925830 | -2.800090 | -3.058030 | -2.941600 |  |  |
| F3                                    | 1.428180       | 1.666780  | 1.635150  | 1.515580  | 1.518110  | 1.660240  | 1.669280  |  |  |
| F4                                    | 2.682190       | 2.536400  | 2.481940  | 2.400530  | 2.326520  | 2.609400  | 2.557050  |  |  |
| F5                                    | 1.240600       | 1.009290  |           | 0.957268  |           | 0.975459  |           |  |  |
| F6                                    | -5.255980      | -4.979410 | -4.956260 | -4.909060 | -4.748800 | -5.151410 | -5.055950 |  |  |
| F7                                    | -3.670430      | -2.694230 | -2.594550 | -3.237570 | -2.981750 | -3.063650 | -2.831490 |  |  |
| F8                                    | -0.254779      |           |           | -1.128120 |           | -0.946876 |           |  |  |
| F9                                    | 3.617940       |           |           | 4.111450  | 3.892510  | 3.790020  | 3.569870  |  |  |
| sh_700-850                            | -0.005868      |           |           |           |           |           |           |  |  |
| sh_500-700                            | -0.042674      |           |           |           |           |           |           |  |  |
| sh_400-500                            | -0.029909      |           |           |           |           |           |           |  |  |
| sh_300-400                            | 0.005313       |           |           |           |           |           |           |  |  |
| sh_500-850                            | 0.021233       |           |           |           |           |           |           |  |  |
| sh_400-700                            | 0.035369       |           |           |           |           |           |           |  |  |
| sh_300-500                            | -0.004502      |           |           |           |           |           |           |  |  |
| sh_400-850                            | -0.040746      |           |           |           |           |           |           |  |  |
| sh_300-700                            | -0.062830      |           |           |           |           |           |           |  |  |
| sh_300-850                            | 0.064388       |           |           |           |           |           |           |  |  |
| Н                                     | -0.001013      | -0.000628 | -0.000641 |           |           | -0.000511 | -0.000569 |  |  |
| Success [%]                           | 70.1           | 73.9      | 70.4      | 73.6      | 68.2      | 73.6      | 69.5      |  |  |
| Surprise [%]                          | 5.7            | 8.1       | 9.2       | 6.5       | 9.2       | 7.3       | 10.0      |  |  |
| False alarm [%]                       | 24.3           | 18.1      | 20.5      | 19.9      | 22.6      | 19.1      | 20.5      |  |  |





Distribution histogram for estimated c values derived from the exp. 2 model in rightful "convection" and "no convection" cases. Most of the estimated c values are <0.5 for "no convection" cases and >0.5 for "convection" cases.

"A" vector correspond to the exp. 4 model (retaining the 9 PCs).It represents an anomalous standardized sounding with a strong T lapse rate between 500 and 850 hPa and very wet air at low levels, which represents a strong instability.

## CONCLUTIONS

The PCA resulted useful to obtain the vertical profile patterns of T and Td. The resulting patterns in direct and reverse modes represent real cases. The analysis of T and Td sheds 6 significant components explaining 94% of the system variability.

In the studied cases, over than 70% of the forecast model effectiveness is obtained using only the T and Td profiles (similar to that found in other studies by traditional indices). The effectiveness could be improved by changing the definition of C and the incorporation of the helicity as a predictor.

Profile patterns of T and Td reveals that the probability of convection increases (decreases) with strong (weak) T lapse-rate between low and middle levels of the troposphere and high (low) moisture content in the lower layers.

Multiple Logistic Regression coefficients b (for seven experiments using different predictor combinations) correspond to the predictors: Principal Component Loadings (F<sub>i</sub>), shear between levels i and j (sh\_i-j), and helicity (H). Significant coefficients at α=0.05 are red highlighted. For the resulting models (predicting "convection" when estimated c> 0.5 and "no convection" when estimated c <0.5) the success, surprise and false alarm percentages are also shown.