CAPS Storm-Scale Ensemble Forecasting for the NOAA HWT 2013 Spring Experiment

Fanyou Kong¹, Ming Xue^{1,2}, Kevin W. Thomas¹, Yunheng Wang¹, Keith Brewster¹, Xuguang Wang^{1,2}, Youngsun Jung¹
Adam Clark⁴, I. L. Jirak³, Mike Coniglio⁴, J. Correia Jr³, Steve J. Weiss³, P. Marsh⁴, John Kain⁴
¹Center for Analysis and Prediction of Storms and ²School of Meteorology, the University of Oklahoma, Norman, OK 73072
³NOAA/Storm Prediction Center, Norman, OK ⁴NOAA/National Severe Storm Lab, Norman, OK

In support of the NOAA Hazardous Weather Testbed (HWT) 2013 Spring Experiment, the Center for Analysis and Prediction of Storms (CAPS) produced multi-model storm-scale ensemble forecasts (SSEF) in realtime from 6 May through 7 June 2013. 30-member 48h ensemble forecasts, consisting of 26 WRF-ARW members, 1 ARPS, and 3 COAMPS members, were performed over the entire CONUS domain at 4-km grid on weekdays spacing and selected weekend days, all initiated at 0000 UTC. An 8-member 18-h ensemble forecast was initialted at 12 UTC. This work is primarily funded by the NOAA CSTAR program, leveraged by other grants

New SSEF Forecast products

Synthetic GOES IR Brightness Temperature

CONUS domain (1200x867)

Forecast domain for the 2013 HWT Spring Experiment. The inner box is for the experimental EnKF forecasting runs.

Simulated dual-polarmetric radar parameters

Simulated differential

Moore, OK Tornado Case (May 20, 2013)

Simulated specific differential Phase (KDP) – deg/km

 Storm-scale ensemble could provide crucial guidance for severe high-impact weather such as tornado and thunderstorms

- Ensembles with IC (initial condition) and LBC (lateral boundary condition) perturbations derived from regional or global ensemble have much larger spread than physics-only ensembles
- LBC perturbations play key role in larger ensemble spread
- Lower IC perturbation amplitude can help having improved QPF skill scores. High IC perturbation amplitude have negative impact to the skill, even though with larger spead.