Severe Convective Weather Forecasting in Europe

Dr. Charles A. Doswell III
OU/CIMMS / Doswell Scientific Consulting Norman, Oklahoma USA
European Conf. on Severe Storms – 03 October 2011
Scientific weather forecasting

- Application of scientific understanding to the problem of forecasting
- By human forecasters!!
- The concept of ingredients-based forecasting
- Threat of severe convective storms is non-zero no matter:
 - The map (where one is in the world)
 - The clock (the local time of day)
 - The calendar (the local time of the year)
What is important?

- If the necessary ingredients for severe convective storms are brought together
 - The storms will develop
 - The storms will be the same as those anywhere around the world!
 - What’s unique about Europe?
 - Any severe convective event that can happen in the USA can happen in Europe!!
Physical geography of Europe
A famous USA severe weather outbreak

- Instability created over high, dry terrain
- Overrides inflow of low-level moisture
Topography in Europe is complex

• Primary impact is on mesoscale processes!
 – Synoptic-scale systems
 – Storm-scale systems

• Mesoscale processes:
 – Fronts, drylines, convective mesosystems, etc.
 – Topographically-driven mesoscale processes

• Large impact on the likelihood of bringing together the ingredients

• Very different from the USA!
A Forecaster’s “Defining Moment”

• *Major* severe convective storms - that put people’s lives and property at risk - are relatively *rare* events

• Forecast shift work typically means you work only about 1/5 of the time or less

• Very few events = little or no *practice* - *You must* do it right the *first* time

• Will your actions make a positive difference?
• How will you feel about what you did?
How forecasters do poorly

• Begin the forecast shift without having anticipated all the possibilities - preconceived notions about the expected day’s weather

• When unanticipated events begin, the forecaster wastes valuable time trying to understand what's happening

• For convective storms, by the time the forecaster understands the situation, it’s usually too late to be of much help
How forecasters do well

• Continuously performing a careful diagnosis, looking for low-probability, but high impact possibilities

• Search for signs that those high impact scenarios might be developing

• Called a “metwatch”

• Have a prepared action plan ready for reacting quickly when necessary
Maddox’s Requirements for Making a Short-Term Forecast

1. An accurate **diagnosis**, including continuous monitoring, of the current situation

2. An extensive **physical understanding** of the phenomena occurring, including any anticipated developments
A conceptual model of the forecast process

• Forecast = Diagnosis + Trend … formally:

\[Q(t_1) = Q(t_o) + \left. \frac{\partial Q}{\partial t} \right|_{t_o} \delta t \]

• Diagnosis (by a human forecaster!) is not just drawing contours - it means an understanding of ongoing meteorological processes
A Schematic Forecast process for Q
Poor nonlinear forecast

simple nonlinear model
Importance of diagnosis

bad diagnosis + perfect model

Forecast Quantity vs. Time

C
F
Typical result of inadequate diagnosis
DMC Ingredients

- Moisture
- Instability
- Lift

Convective available potential energy (CAPE)

Convective inhibition (CIN)
Sources of lift

- Extratropical cyclone = synoptic-scale (quasigeostrophic) vertical motion ~ a few (say, 2) cm s$^{-1}$
 - LFC = 2 km \Rightarrow 100 000 s $>$ 1 day
- Subsynoptic-scale vertical motion ~ 20+ cm s$^{-1}$ \Rightarrow < 10 000 s (about 3 h)
DMC related to ETCs

Slow ascent over warm front

Rapid ascent along cold front
Where does the lift occur?

• Ascent - especially subsynoptic-scale ascent - does not usually happen in the centers of anticyclones!
• In ETCs, ascent usually is concentrated along dynamic boundaries – Fronts, drylines (mesoscale?)
• Orographic ascent - upslope flow
• Subsynoptic-scale baroclinic boundaries (e.g., land/sea breeze fronts, outflow boundaries)
10 May 2008 case (20Z)
10 May 2008 Case - (04Z)
Subsynoptic Scale (Mesoscale) Boundaries
Severe Wx forecasting challenges

• False alarms!
 – Sufficiency of ingredients
 – Not all necessary ingredients are known

• Each severe weather type represents a different set of problems
 – Convective wind gusts
 – Large hail
 – Tornadoes
 – Heavy, flash-flood producing rainfall
Forecasting practice

• Hand analysis of upper air charts
• Identify key soundings and analyze them
• Routine hand-done surface analysis
 – Not the “industry standard” of fronts and isobars
 – Isotherms and isodrosotherms or … preferably … Potential temperature and mixing ratio
Standard surface analysis = *Useless!*
The “Met Watch”

• Develop a conceptual model of ongoing processes – identify and resolve issues of questionable data
• Monitor satellite imagery, radar
• Surface analysis (at least once every 3 h)
 – Identify signs of impending changes in the ongoing processes
 – Update your conceptual model
• Practice in these methods is most easily obtained in “boring” weather situations
• Be able to anticipate important changes
Use of numerical models

• Trying to identify the “model of the day” is a waste of time!!
• Use the concept of the “ensemble”
 – Gives a sense of what is possible
 • What is most likely
 • Low probability – high impact scenarios
 – Before things begin: forecast what is most probable, but be alert to the possibilities
Nonlinear thinking

- **Anticipating events**
 - Ingredients not yet together? Does it look possible they will be?
 - What kind of events? For deep convection, a critical ingredient for sustained severe wx is **vertical wind shear**
 - Affects degree of organization of convection
 - Pulse severe convective storms
 - Isolated multicell storms
 - Linearly-organized multicell storms
 - Supercells
Nonlinear thinking (cont’d)

• Complex terrain and associated mesoscale processes dominate the weather in Europe!
• Any attempt at scientific forecasting in Europe must include familiarity with the science of these processes
• Local *experience* with these processes is critical!
 – A big factor in becoming a good forecaster of European severe convective storms
ESTOFEX

• These are the best, most experienced severe convective storm forecasters in Europe!

• A good example of what I believe is needed for Europe
For any forecast to be effective

• Your forecasts must be
 – Seen/heard by the users, who must
 – Understand the forecast
 – Believe the forecast
 – Know what it means to them
 – Know what to do with the information
 – Take the appropriate action
Societal infrastructure needed

- Means of getting forecasts to public quickly
- Collaboration between forecaster and emergency managers
- Public education – most Europeans still believe severe convective storms “don’t happen here”
- Formal, permanent funding for a pan-European severe storms forecasting agency
Thank you!!

- cdoswell@earthlink.net
- http://www.flame.org/~cdoswell