Severe Convective Weather Forecasting in Europe

Dr. Charles A. Doswell III OU/CIMMS / Doswell Scientific Consulting Norman, Oklahoma USA European Conf. on Severe Storms – 03 October 2011

Scientific weather forecasting

- Application of scientific understanding to the problem of forecasting
- By *human* forecasters!!
- The concept of *ingredients-based* forecasting
- Threat of severe convective storms is nonzero no matter:
 - The map (where one is in the world)
 - The clock (the local time of day)
 - The calendar (the local time of the year)

What is important?

- If the necessary ingredients for severe convective storms are brought together
 - The storms will develop
 - The storms will be the same as those anywhere around the world!
 - What's unique about Europe?
 - <u>Any</u> severe convective event that can happen in the USA <u>can</u> happen in Europe!!

Physical geography of Europe

A famous USA severe weather outbreak

- Instability created over high, dry terrain
- Overrides inflow of low-level moisture

Topography in Europe is complex

- Primary impact is on mesoscale processes!
 - Synoptic-scale systems similar around the world
 - Storm-scale systems
- Mesoscale processes:
 - Fronts, drylines, convective mesosystems, etc.
 - Topographically-driven mesoscale processes
- <u>Large</u> impact on the likelihood of bringing together the ingredients
- Very different from the USA!

A Forecaster's "Defining Moment"

- Major severe convective storms that put people's lives and property at risk - are relatively rare events
- Forecast shift work typically means you work only about 1/5 of the time or less
- Very few events = little or no practice <u>You must</u> do it right the first time
- Will your actions make a positive difference?
- How will you feel about what you did?

How forecasters do poorly

- Begin the forecast shift without having anticipated all the possibilities preconceived notions about the expected day's weather
- When unanticipated events begin, the forecaster wastes valuable time trying to understand what's happening
- For convective storms, by the time the forecaster understands the situation, it's usually too late to be of much help

How forecasters do well

- Continuously performing a careful diagnosis, looking for *low-probability*, but *high impact* possibilities
- Search for signs that those high impact scenarios might be developing
- Called a "metwatch"
- Have a prepared action plan ready for reacting quickly when necessary

Maddox's Requirements for Making a Short-Term Forecast

- 1. An accurate diagnosis, including continuous monitoring, of the current situation
- 2. An extensive physical understanding of the phenomena occurring, including any anticipated developments

A conceptual model of the forecast process

• Forecast = Diagnosis + Trend ... formally:

$$Q(t_1) = \underbrace{Q(t_o)}_{diagnosis} + \underbrace{\frac{\partial Q}{\partial t}}_{t_o} \delta t$$
trend

 Diagnosis (by a human forecaster!) is not just drawing contours - it means an understanding of ongoing meteorological processes

A Schematic Forecast process for Q

Poor nonlinear forecast

Importance of diagnosis

Typical result of inadequate diagnosis

DMC Ingredients

- Moisture
- Instability

• Lift

Convective available potential energy (CAPE)

inhibition (CIN) ----

Sources of lift

 Extratropical cyclone = synoptic-scale (quasigeostrophic) vertical motion ~ a few (say, 2) cm s⁻¹

 $-LFC = 2 \text{ km} \Rightarrow 100\ 000 \text{ s} = > 1 \text{ day}$

• Subsynoptic-scale vertical motion ~ 20+ cm s⁻¹ \Rightarrow < 10 000 s (about 3 h)

DMC related to ETCs

98 Water Vapor Image 1815 UTC 10 Nov 1998 National Center for Atmospheric Research (c)1998 UCAR

Slow ascent over warm front

Rapid ascent along cold front

Where does the lift occur?

- Ascent especially subsynoptic-scale ascent - does <u>not</u> usually happen in the centers of anticyclones!
- In ETCs, ascent usually is concentrated along dynamic boundaries

 Fronts, drylines (mesoscale?)
- Orographic ascent upslope flow
- Subsynoptic-scale baroclinic boundaries (e.g., land/sea breeze fronts, outflow boundaries)

10 May 2008 case (20Z)

10 May 2008 Case - (04Z)

Subsynoptic Scale (Mesoscale) Boundaries

Severe Wx forecasting challenges

- False alarms!
 - Sufficiency of ingredients
 - Not all necessary ingredients are known
- Each severe weather type represents a different set of problems
 - Convective wind gusts
 - Large hail
 - Tornadoes
 - Heavy, flash-flood producing rainfall

Forecasting practice

- Hand analysis of upper air charts
- Identify key soundings and analyze them
- Routine hand-done surface analysis
 - Not the "industry standard" of fronts and isobars
 - Isotherms and isodrosotherms or ...
 preferably ... Potential temperature and mixing ratio

Standard surface analysis = Useless!

The "Met Watch"

- Develop a conceptual model of ongoing processes – identify and resolve issues of questionable data
- Monitor satellite imagery, radar
- Surface analysis (at least once every 3 h)
 - Identify signs of impending changes in the ongoing processes
 - Update your conceptual model
- Practice in these methods is most easily obtained in "boring" weather situations
- Be able to anticipate important changes

Use of numerical models

- Trying to identify the "model of the day" is a waste of time!!
- Use the concept of the "ensemble"
 - Gives a sense of what is possible
 - What is most likely
 - Low probability high impact scenarios
 - Before things begin: forecast what is most probable, but be alert to the possibilities

Nonlinear thinking

- Anticipating events
 - Ingredients not yet together? Does it look possible they will be?
 - What kind of events? For deep convection, a critical ingredient for sustained severe wx is vertical wind shear
 - Affects degree of organization of convection
 - Pulse severe convective storms
 - Isolated multicell storms
 - Linearly-organized multicell storms
 - Supercells

Nonlinear thinking (cont'd)

- Complex terrain and associated mesoscale processes dominate the weather in Europe!
- Any attempt at scientific forecasting in Europe must include familiarity with the science of these processes
- Local experience with these processes is critical!
 - A big factor in becoming a good forecaster of European severe convective storms

ESTOFEX

- These are the best, most experienced severe convective storm forecasters in Europe!
- A good example of what I believe is needed for Europe

Storm Forecast valid Thu 29 Sep 2011 06:00 - Fri 30 Sep 2011 06:00 UTC Issued: Wed 28 Sep 2011 14:55 UTC. Forecaster: GATZEN Reported severe weather is plotted on the above map, source: www.eswd.eu (courtesy of ESSL) Legend: tornadoes (red); heavy rain (cyan); large hail (green); severe winds (yellow) The map shows lightning data kindly provided by the EUCLID network (www.euclid.org) (C) ESTOFEX

For any forecast to be effective

- Your forecasts must be
 - Seen/heard by the users, who must
 - Understand the forecast
 - Believe the forecast
 - Know what it means to them
 - Know what to do with the information
 - Take the appropriate action

Societal infrastructure needed

- Means of getting forecasts to public quickly
- Collaboration between forecaster and emergency managers
- Public education most Europeans still believe severe convective storms "don't happen here"
- Formal, <u>permanent</u> funding for a pan-European severe storms forecasting agency

Thank you!!

- cdoswell@earthlink.net
- http://www.flame.org/~cdoswell