Observations from VORTEX2:
The pretornadic phase of the Goshen
County, Wyoming, supercell (5 June 2009)
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Observations from VORTEX2:
The pretornadic phase of the Goshen
County, Wyoming, supercell (5 June 2009)
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2129:58 UTC (t—22 min) 6 top view
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arches—strongly suggest baroclinically generatea
vorticity within the cold pool and subsequent liftin
the vortex lines
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What are the relative roles of environmental
vorticity versus storm-generated vorticity?

Both are important (e.g., we
cannot get a supercell
without strong environmental
vorticity, and simulations/
theory show that we cannot
get rotation at the surface
without downdrafts and
baroclinity).

' Generalization of vortex li
observed and simulat_ed stor

What is less obvious is how
their relative importance
might vary from storm to
storm (and perhaps
determine the likelihood of
tornadogenesis).



Material circuit approach
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origin origin
therefore, we can learn something about the
bulk contribution to the mesocyclone’s
circulation from baroclinic vorticity generation.

.]{V-dl.

is a much less volatile calculation than the
forcing terms in the vorticity equation



On the Rotation and Propagation of Simulated Supercell Thunderstorms

RICHARD ROTUNNO AND JOSEPH KLEMP
National Center for Atmospheric Research,' Boulder, CO 80307
(Manuscript received [4 June 1984, in final form 18 October 1984)

ABSTRACT

We examine the rotation and propagation of the supercell-like convection produced by our three-
dimensional cloud model. The rotation in the supercell is studied in terms of the conservation of equivalent
potential vorticity and V. Bjerknes’ first circulation theorem; neither of these have been used previously in
this connection, and we find that they significantly contribute to the current level of understanding in this
area. Using these we amplify the findings of our previous work in which we found that the source of midlevel
rotation is the horizontally oriented vorticity associated with the environmental shear, while the low-level
rotation derives from the baroclinic generation of horizontally oriented vorticity along the low-level cold-air
boundary. We further demonstrate that these same processes that amplify the low-level rotation also produce
the distinctive cloud feature known as the “wall cloud.”

We find that the thunderstorm propagates rightward primarily because of the favorable dynamic vertical
pressure gradient that, owing to storm rotation, is always present on the right flank of the updraft. Simulations
without precipitation physics demonstrate that this rightward propagation occurs even in the absence of a
cold outflow and gust front near the surface.
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Circuit B
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2148:00 UTC (14 min)
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Circuit A: DRC alters buoyancy field and/or promotes occlusion (end result is DC/Dt >> 0)

Circuit B: converges upon ¢,.... before DRC arrives at low levels (DC/Dt < 0 during circuit’s final approach)



Summary

* Despite significant environmental vorticity,
environmental vortex lines do not appear to have
contributed to the low-level circulation in a significant
way

— That leaves baroclinic vortex lines (Bjerknes’ theorem)

The total increase in circulation about the material
circuits (~1.2 x 10° m? s~') was very similar to the
increase in the simulated supercell analyzed by
Rotunno and Klemp (1985), but occurred much faster,
despite the fact that the observed cold pool was much
weaker than the cold pool in Rotunno & Klemp’s
simulation




2144-2152 UTC mobile mesonet observations
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For generous assumptions of
Az =1000 mand A6, =10K
(this requires doubling the
observed ~3-K A6, and
adding another 4 K to
account for hydrometeors),
AC =0.8 x 105 m?2 s

(only 60% of the observed
AC =1.2x10°m2s™).




2142:00 UTC (=70 min)
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We can’t exclude the possibility
that surface drag might have
contributed positively to DC/Dt.

(Surface drag is well-known to be
important for tornadogenesis by
disrupting cyclostrophic balance,
but its possible contribution to low-
level mesocyclone rotation has not
been considered previously.)
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Video frames courtesy of
Nolan Atkins & Roger Wakimoto




* |If the environmental vorticity did not directly
contribute to the low-level circulation, then what
was its role?




height AGL (km)

Perhaps environmental vorticity is important,
especially at low levels, because its tilting
establishes the base of the midlevel mesocyclone
at fairly low elevations.

This would give rise to a strong upward-directed
perturbation PGF at low levels that could forcibly
lift negatively buoyant air

(the upward-directed perturbation PGF must be

strong enough to offset the negative buoyancy of the
circulation-bearing outflow air).

top view




