The Mesocyclone Detection Algorithm of DWD

Thomas Hengstebeck¹, Dirk Heizenreder², Paul Joe³, Peter Lang⁴
¹Deutscher Wetterdienst (DWD), Offenbach, Germany, thomas.hengstebeck@dwd.de
²Deutscher Wetterdienst (DWD), Offenbach, Germany, dirk.heizenreder@dwd.de
³Environment Canada, Toronto, Ontario, Canada, paul.joe@ec.gc.ca
⁴Deutscher Wetterdienst (DWD), Hohenpeissenberg, Germany, peter.lang@dwd.de

Dr. Thomas Hengstebeck, Deutscher Wetterdienst, FEZE-C
Contents

1. Basics of the DWD Mesocyclone-Detection-Algorithm (MDA)
 1.1 Motivation
 1.2 Principle (→ Rankine Combined Vortex)
 1.3 Processing (Algorithm, Severity Calculation)

2. Case studies
 2.1 Tornadic Supercell Großenhain, Saxony (F3)
 2.2 Tornadic Supercell Sautorn, Bavaria (F2)
Definition Mesocyclone*: A cyclonically rotating vortex, around 2-10 km in diameter, in a convective storm. Mesocyclones are frequently found in conjunction with updrafts in supercells.

*see AMS Glossary of Meteorology

Mesocyclones often occur in connection with severe weather events:

- Heavy rain
- Hail
- Strong winds
- Tornados

Structure of a typical supercell storm (adapted from Wallace, Hobbs, *Atmospheric Science*, 2006)

Automated Meso-Warnings can give valuable hints to meteorologists in the warning service (who usually cannot analyze all available data in real time).
MDA – Principle
Rankine Combined Vortex

Vortex wind field

Shear $s = \frac{dv}{dr}$

Rigid Rotation in inner region ($r \leq R$) → const. shear

Mathematical Model

$$v_{doppler} = v_0 \cdot \begin{cases}
\frac{r}{R}, & r \leq R \\
\frac{R}{r}, & r > R
\end{cases}$$

Figure adapted from S. V. Vasiloff: Improving Tornado Warnings with the Federal Aviation Administration’s Terminal Doppler Weather Radar Bull. Amer. Meteor. Soc., 82, 861–874, 2001

Adapted from http://www.nssl.noaa.gov/papers/dopplerguide/chapter4.html
Appearance in radar (example) Tornadic Supercell Großenhain, May 24, 2010 13:45 UTC reference time, Tornado rated F3

Doppler wind corrected data

Azimuthal profile

RC – vortex signature clearly visible
Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator*)
- Calculation of azimuthal shear correcting aliasing

Combine long range and large measurement interval of Doppler velocities by means of DualPRF mode

For DWD Doppler scan (1200/800Hz):
- \(V_{\text{ext. Nyquist}} = 32 \text{ m/s} \)
- \(\text{Range}_{\text{max}} = 124 \text{ km} \)

ERROR if \(v_1 \neq v_2 \) (tolerance of 5.3 m/s exceeded)

Assumption: \(V_1 = V_2 \)

\[\begin{align*}
 \rightarrow & \text{ derive } V_e \\
 \rightarrow & \text{ replace } V_2 \\
 \text{by } V_{2,e} = V_2 + n V_{2n}
\end{align*} \]

Simulated Data: Meso Vortex superimposed on unidirectional wind field, Gaussian noise added, DualPRF 1200/800Hz

Laplacian Filter

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator*)
- Calculation of azimuthal shear correcting aliasing

Combine long range and large measurement interval of Doppler velocities by means of DualPRF mode

For DWD Doppler scan (1200/800Hz):
- \(V_{\text{ext. Nyquist}} = 32 \text{ m/s} \)
- \(\text{Range}_{\text{max}} = 124 \text{ km} \)

\(V_1 \approx V_2 \) → derive \(V_e \) → replace \(V_2 \) by \(V_{2,e} = V_2 + n V_{2n} \)

ERROR if \(v_1 \neq v_2 \) (tolerance of 5.3 m/s exceeded)

\[\text{Simulated Data: } \]

Meso Vortex superimposed on uni-directional wind field, Gaussian noise added, DualPRF 1200/800Hz

MDA – Processing

Doppler Data Preproc. and Program Flow

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator)
- Calculation of **azimuthal shear** correcting aliasing

MDA

- Search for pattern vectors, i.e. sequences of significant, positive azimuthal shear
- Filter pattern vectors (momentum and shear thresholds)

*basic algorithm described in:

D.S. Zrnic, D.W. Burgess and L.D. Hennington

Automatic Detection of Mesocyclonic Shear with Doppler Radar

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator)
- Calculation of azimuthal shear correcting aliasing

MDA

- Search for pattern vectors, i.e. sequences of significant, positive azimuthal shear
- Filter pattern vectors (momentum and shear thresholds)
- Group pattern vectors to features
- Filter features (no. of pattern vectors, symmetry criteria)

*basic algorithm described in:

D.S. Zrnic, D.W. Burgess and L.D. Hennington

Automatic Detection of Mesocyclonic Shear with Doppler Radar

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator)
- Calculation of **azimuthal shear** correcting aliasing

MDA

- Search for pattern vectors, i.e. sequences of significant, positive azimuthal shear
- Filter pattern vectors (momentum and shear thresholds)
- Group pattern vectors to features
- Filter features (no. of pattern vectors, symmetry criteria)
- Group features to meso-objects
- Estimate Severity of meso-objects
MDA – Processing
Severity Calculation

<table>
<thead>
<tr>
<th>Severity-Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. reflectivity [dBZ]</td>
<td>≥ 10</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>Avg. Reflectivity [dBZ]</td>
<td>≥ 10</td>
<td>20</td>
<td>25</td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>Height above ground [km]</td>
<td>≤ 5</td>
<td>3</td>
<td>2.5</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>Meso-Height [km]</td>
<td>> 0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>VIL [kg m(^{-2})]</td>
<td>> 2</td>
<td>2</td>
<td>5</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Echo top height [km]</td>
<td>> 1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>VIL density* [g cm(^{-3})]</td>
<td>> 0</td>
<td>1</td>
<td>1.5</td>
<td>2.</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Quality of Detection / severity level

Severity 1 detections are connected with very low thresholds and rather serve for development/tuning purposes.

* VIL density = VIL / Echo top height

Tuning still in progress! Later MDA-version will contain additional thresholds for shear and momentum for levels 4 + 5
1. Basics of the DWD Mesodetection-Algorithm (MDA)
 1.1 Motivation
 1.2 Principle (→ Rankine Combined Vortex)
 1.3 Processing (Algorithm, Severity Calculation)

2. Case studies
 2.1 Tornadic Supercell Großenhain, Saxony (F3)
 2.2 Tornadic Supercell Sautorn, Bavaria (F2)

All Doppler wind plots in this section show data with applied dualPRF unfolding error correction
Supercell Großenhain
Tornado rated F3, May 24, 2010

80-100 km long track of damage mainly between Mühlberg in Brandenburg and Großhartau in Saxony

12:15 UTC

Well developed Hook Echo

13:30 UTC

No detection just 2 PV

14:45 UTC

Severity Level Color-Coding:
- Level 1
- Level 2
- Level 3
- Level 4
- Level 5
Supercell Großenhain
Tornado rated F3, May 24, 2010

Mesocyclonic signatures detected in 12 sweeps (Elevations 1.5°, 2.5°, 4.5-11°, 15-19°)

Aliasing corrected during azim. shear calc.
Mesocyclonic signatures detected in 12 sweeps (Elevations 1.5°, 2.5°, 4.5-11°,15-19°)

Supercell Großenhain
Tornado rated F3, May 24, 2010
Supercell Sautorn, Bavaria
Tornado rated F2, July 13, 2011

Meso-Detections, Severity-Level 5, 13.07.2011, 15:30 UTC - 16:15 UTC

based on: information from an eye-witness report, photograph(s) and/or video footage of the inflicted damage, a report on a website, a damage survey by a severe weather expert, an eyewitness report of the damage occurring over: land

land use where event was first observed: land

intensity: F2

the intensity rating was based on a damage survey by a severe weather expert, photograph(s) and/or video footage of the inflicted damage, an eyewitness report of the damage.

path length: 1 km

tornado caused damages in Sautorn village: brick-barn downed / destroyed; roofs blown away; lorry blown off;

source: TORNADOLISTE; http://www.tornadoliste.de/110713sautorn.htm

report status: report confirmed (QC1)
contact: Thilo Kühne (ESWD management) [e-mail]

6th European Conference on Severe Storms (ECSS 2011), 3 - 7 October 2011, Palma de Mallorca, Balearic Islands, Spain
Supercell Sautorn, Bavaria
Tornado rated F2, July 13, 2011

Radar Munich, 2011-07-13 16:15 UTC, Elevation 0.5°
Radar Munich, 2011-07-13 16:15 UTC, Elevation 0.5°

Supercell Sautorn, Bavaria
Tornado rated F2, July 13, 2011
<table>
<thead>
<tr>
<th>#</th>
<th>date</th>
<th>Region</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2011-05-31</td>
<td>Brandenburg</td>
<td>Supercell mesocyclone</td>
</tr>
<tr>
<td>2</td>
<td>2011-06-06</td>
<td>Allgäu, Nordeifel</td>
<td>Supercell mesocyclone</td>
</tr>
<tr>
<td>3</td>
<td>2011-06-16</td>
<td>Central Franconia, Passau</td>
<td>Supercell mesocyclone</td>
</tr>
<tr>
<td>4</td>
<td>2011-06-22</td>
<td>Alps (Rosenheim)</td>
<td>Supercell mesocyclone</td>
</tr>
<tr>
<td>5</td>
<td>2011-07-12</td>
<td>Baden-Württemberg</td>
<td>Supercell mesocyclone</td>
</tr>
<tr>
<td>6</td>
<td>2011-07-13</td>
<td>East from Munich to Bavarian Forest</td>
<td>Supercell mesocyclone, F2 tornado at Sautorn</td>
</tr>
<tr>
<td>7</td>
<td>2011-07-19</td>
<td>Munich</td>
<td>Supercell mesocyclone</td>
</tr>
<tr>
<td>8</td>
<td>2011-08-14</td>
<td>Bavaria, Danube</td>
<td>Supercell mesocyclone</td>
</tr>
<tr>
<td>9</td>
<td>2011-08-18</td>
<td>North Rhine-Westphalia</td>
<td>Mesocyclone at southern end of squall line</td>
</tr>
<tr>
<td>10</td>
<td>2011-08-24</td>
<td>Central Hesse, Berlin</td>
<td>Supercell in Hesse (hail ⌀ 4cm), splitting supercell close to Berlin</td>
</tr>
<tr>
<td>11</td>
<td>2011-09-02</td>
<td>South of Stuttgart</td>
<td>Supercell mesocyclone</td>
</tr>
<tr>
<td>12</td>
<td>2011-09-04</td>
<td>Ravensburg</td>
<td>HP-supercell (hail ⌀ 4 cm, 100 mm precipitation)</td>
</tr>
<tr>
<td>13</td>
<td>2011-09-11</td>
<td>Harz Mountains (Elsnigk, Bernburg), Würzburg, Kassel, Eberswalde</td>
<td>Several supercells, F2 tornado at Bernburg</td>
</tr>
</tbody>
</table>
Outlook

RADSYS-E (exchange of DWD radar network 2010-14: modern dual-polarized C-band Doppler radars, 17 operational systems)

- Better quality of Doppler data from new radar systems expected (less noise)
- Usage of new products for better severity estimation (e.g. hydrometeor classification → identification of hail core)

Change of scan-strategy

- Higher temporal and range resolution (→ better tracking)
- Use *unfiltered* data and supply threshold parameters (e.g. SQI) for special application based settings instead of using filtered data (→ avoid "filter holes")

Further development

- Extension of KONRAD (SCIT) to KONRAD3D, linking of MDA to cell detection
- Consideration of near Storm environment (shear, CAPE from model)
- Calculation of Rotation tracks (see NSSL*) as further tool to judge plausability of mesocyclone detections

* T. M. Smith, K. L. Elmore: The Use of Radial Velocity Derivatives to Diagnose Rotation and Divergence, 11th Conference on Aviation, Range, and Aerospace Meteorology

6th European Conference on Severe Storms (ECSS 2011), 3 - 7 October 2011, Palma de Mallorca, Balearic Islands, Spain
Outlook

ID / Time: VOL_10488_17_20100524_1215

Maximum shear in column

Reflectivity [dBZ], elevation 0.5°

max shear in column [m/s/km]

max. shear accumulated over 2.5 h

Thank you for your attention!