

The Mesocyclone Detection Algorithm of DWD

Thomas Hengstebeck¹, Dirk Heizenreder², Paul Joe³, Peter Lang⁴

- ¹Deutscher Wetterdienst (DWD), Offenbach, Germany, thomas.hengstebeck@dwd.de
- ²Deutscher Wetterdienst (DWD), Offenbach, Germany, dirk.heizenreder@dwd.de
- ³Environment Canada, Toronto, Ontario, Canada, paul.joe@ec.gc.ca
- ⁴Deutscher Wetterdienst (DWD), Hohenpeissenberg, Germany, peter.lang@dwd.de

Dr. Thomas Hengstebeck, Deutscher Wetterdienst, FEZE-C

- 1. Basics of the DWD Mesocyclone-Detection-Algorithm (MDA)
 - 1.1 Motivation
 - 1.2 Principle (→ Rankine Combined Vortex)
 - 1.3 Processing (Algorithm, Severity Calculation)
- 2. Case studies
 - 2.1 Tornadic Supercell Großenhain, Saxony (F3)
 - 2.2 Tornadic Supercell Sautorn, Bavaria (F2)

MDA – Motivation

Supercell storm

<u>Definition Mesocyclone*:</u>

A cyclonically rotating vortex, around 2-10 km in diameter, in a convective storm. Mesocyclones are frequently found in conjunction with updrafts in supercells.

*see AMS Glossary of Meteorology

Mesocyclones often occur in connection with severe weather events:

- → Heavy rain
- → Hail
- → Strong winds
- Tornados

Structure of a typical supercell storm (adapted from Wallace, Hobbs, *Atmospheric Science*, 2006)

Automated Meso-Warnings can give valuable hints to meteorologists in the warning service (who usually cannot analyze all available data in real time).

MDA – Principle

Rankine Combined Vortex

Adapted from http://www.nssl.noaa.gov/papers/dopplerguide/chapter4.html

MDA – PrincipleRankine Combined Vortex

Appearance in radar (example) Tornadic Supercell Großenhain, May 24, 2010 13:45 UTC reference time, Tornado rated F3

Doppler Data Preproc. and Program Flow

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator*)
- Calculation of azimuthal shear correcting aliasing

Combine long range and large measurement intervall of Doppler velocities by means of DualPRF mode

For DWD Doppler scan (1200/800Hz):

 $V_{\text{ext. Nyquist}} = 32 \text{ m/s}$ Range_{max} = 124 km

DualPRF unfolding

ERROR if $v_1 \not= v_2$ (tolerance of 5.3 m/s exceeded)

*P. Joe, P. T. May: Correction of Dual PRF Velocity Errors for Operational Doppler Weather Radars J. Atmos. Oceanic Technol., 20, 429–442, 2003.

Correction* Simulated Data: Meso Vortex superimposed on unidirectional wind field, Gaussian noise added, DualPRF 1200/800Hz **Laplacian Filter** v [m/s] range [km] azimuth [°]

Doppler Data Preproc. and Program Flow

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator*)
- Calculation of azimuthal shear correcting aliasing

Combine long range and large measurement intervall of Doppler velocities by means of DualPRF mode

For DWD Doppler scan (1200/800Hz):

 $V_{\text{ext. Nyquist}} = 32 \text{ m/s}$ Range_{max} = 124 km

DualPRF unfolding

ERROR if $v_1 \not= v_2$ (tolerance of 5.3 m/s exceeded)

*P. Joe, P. T. May: Correction of Dual PRF Velocity Errors for Operational Doppler Weather Radars J. Atmos. Oceanic Technol., 20, 429–442, 2003.

Simulated Data:

Correction*

Meso Vortex superimposed on unidirectional wind field, Gaussian noise added, DualPRF 1200/800Hz

Doppler Data Preproc. and Program Flow

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator)
- Calculation of azimuthal shear correcting aliasing

MDA*

- Search for pattern vectors, i.e.sequences of significant, positive azimuthal shear
- → Filter pattern vectors (momentum and shear thresholds)

Single sweep, 2D-plot

D.S. Zrnic, D.W. Burgess and L.D. Hennington Automatic Detection of Mesocyclonic Shear with Doppler Radar J. Atmos. Oceanic Technol., 2, 425–438, 1985.

^{*}basic algorithm described in:

Doppler Data Preproc. and Program Flow

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator)
- Calculation of azimuthal shear correcting aliasing

MDA*

- **Pattern vectors** Search for pattern vectors, i.e.sequences of significant, positive azimuthal shear
- |Filter pattern vectors (momentum and shear thresholds)
- Group pattern vectors to features
- Filter features (no. of pattern vectors, symmetry criteria)

Features

D.S. Zrnic, D.W. Burgess and L.D. Hennington Automatic Detection of Mesocyclonic Shear with Doppler Radar J. Atmos. Oceanic Technol., 2, 425-438, 1985.

Single sweep, 2D-plot

Doppler Data Preproc. and Program Flow

Doppler Data Preprocessing

- Correction of Doppler wind for DualPRF unfolding errors (Laplacian operator)
- Calculation of azimuthal shear correcting aliasing

MDA

- Search for pattern vectors, i.e.sequences of significant, positive azimuthal shear
- → |Filter pattern vectors (momentum and shear thresholds)
- Group pattern vectors to features

Features

- → Filter features (no. of pattern vectors, symmetry criteria)
- → Group features to meso-objects

Meso-Objects

→ Estimate Severity of meso-objects

Group of sweeps, 3D-plot

Severity Calculation

;	Severity-Level		1	2 Quality of	3 Detection	4	5
	Max. reflectivity [dBZ]	2	10	30	40	50	55
4	Avg. Reflectivity [dBZ]		10	20	25	35	40
	Height above ground [km]	≤	5	3	2.5	2	1.5
	Meso-Height [km]	>	0	0	2	4	6
	VIL [kg m ⁻²]	>	2	2	5	20	30
	Echo top height [km]	>	1	3	4	5	7
	VIL density* [g cm ⁻³]	>	0	1	1.5	2.	2.5

Tuning still in progress!

Later MDA-version will contain additional thresholds for shear and momentum for levels 4 + 5

Severity 1 detections are connected with very low thresholds and rather serve for development/tuning purposes

* VIL density = VIL / Echo top height

Contents

- 1. Basics of the DWD Mesodetection-Algorithm (MDA)
 - 1.1 Motivation
 - 1.2 Principle (→ Rankine Combined Vortex)
 - 1.3 Processing (Algorithm, Severity Calculation)

2. Case studies

- 2.1 Tornadic Supercell Großenhain, Saxony (F3)
- 2.2 Tornadic Supercell Sautorn, Bavaria (F2)

All Doppler wind plots in this section show data with applied dualPRF unfolding error correction

Supercell Großenhain Tornado rated F3, May 24, 2010

Supercell Großenhain Tornado rated F3, May 24, 2010

Radar Dresden, 2010-05-24 13:30 UTC, Elevation 6.5° Mesocyclonic signatures detected in 12 sweeps (Elevations 1.5°, 2.5°, 4.5-11°,15-19°)

Supercell Großenhain Tornado rated F3, May 24, 2010

Radar Dresden, 2010-05-24 13:30 UTC, Elevation 6.5° Mesocyclonic signatures detected in 12 sweeps (Elevations 1.5°, 2.5°, 4.5-11°,15-19°)

Supercell Sautorn, Bavaria Tornado rated F2, July 13, 2011

Supercell Sautorn, Bavaria Tornado rated F2, July 13, 2011

Radar Munich, 2011-07-13 16:15 UTC, Elevation 0.5°

Supercell Sautorn, Bavaria Tornado rated F2, July 13, 2011

Radar Munich, 2011-07-13 16:15 UTC, Elevation 0.5°

MDA – verified detections 2011

#	date	Region	Comment
1	2011-05-31	Brandenburg	Supercell mesocyclone
2	2011-06-06	Allgäu, Nordeifel	Supercell mesocyclone
3	2011-06-16	Central Franconia, Passau	Supercell mesocyclone
4	2011-06-22	Alps (Rosenheim)	Supercell mesocyclone
5	2011-07-12	Baden-Württemberg	Supercell mesocyclone
6	2011-07-13	East from Munich to Bavarian Forest	Supercell mesocyclone, F2 tornado at Sautorn
7	2011-07-19	Munich	Supercell mesocyclone
8	2011-08-14	Bavaria, Danube	Supercell mesocyclone
9	2011-08-18	North Rhine-Westphalia	Mesocyclone at southern end of squall line
10	2011-08-24	Central Hesse,	Supercell in Hesse (hail \varnothing 4cm),
		Berlin	splitting supercell close to Berlin
11	2011-09-02	South of Stuttgart	Supercell mesocyclone
12	2011-09-04	Ravensburg	HP-supercell (hail Ø 4 cm, 100 mm precipitation)
13	2011-09-11	Harz Mountains (Elsnigk, Bernburg), Würzburg, Kassel, Eberswalde	Several supercells, F2 tornado at Bernburg

RADSYS-E (exchange of DWD radar network 2010-14: modern dual-polarized C-band Doppler radars, 17 operational systems)

- → Better quality of Doppler data from new radar systems expected (less noise)
- → Usage of new products for better severity estimation (e.g. hydrometeor classification → identification of hail core)

Change of scan-strategy

- → Higher temporal and range resolution (→ better tracking)
- Use *unfiltered* data and supply threshold parameters (e.g. SQI) for special application based settings instead of using filtered data (→ avoid_filter holes")

Further development

Extension of KONRAD (SCIT) to KONRAD3D, linking of MDA to cell detection

Consideration of near Storm environment (shear, CAPE from model)

→ Calculation of Rotation tracks (see NSSL*) as further

* T. M. Judge plausability of mesocyclone detections to Diagnose Rotation and Divergence, 11th Conference on Aviation, Range, and Aerospace Meteorology

