SEVERE HAIL SIZE DISCRIMINATION USING DUAL-POLARIZED WEATHER RADAR DATA.
A DUAL-WAVELENGTH COMPARISON BETWEEN “C“ AND “S” BAND.

6th European Conference on Severe Storms (ECSS 2011)
3 - 7 October 2011, Palma de Mallorca, Balearic Islands, Spain

Rudolf Kaltenboeck, Alexander Ryzhkov
Outline

- Motivation
- Data
- Methodology
- Results
 - hail backscattering effects
 - average profiles within hail bearing storm
- Attenuation – differential phase
- Conclusion - Outlook
Motivation

aviation

weather radar

hail
Motivation

- new installed dual polarized weather radars (C-band) in Austria
Motivation

Operational European Weather Radars

OPERA database:

Dec. 2010
Motivation
Operational European Weather Radars
OPERA database:
Dec. 2010
Aim

Large Hail D > 2.5 cm
Giant Hail D > 5 cm
Data
SPC hail reports for Oklahoma, 2/2009-4/2011
Data: OU-PRIME C-band

- different scan strategies e.g.:
 - range bin: 125 m
 - range: 125 km
 - elevation: 0.25-9/19 (8)
 - bw: 0.5°
Data: KOUN S-band

- polarimetric prototype of the WSR-88D
- range bin: 250 m
- range: 300 km
- elevation: 0.5-19.5° (#14)
- bw: 1°

- distance: 6.8 km
Data: Dual Polarized Moments used in this study

- Differential Reflectivity \(Z_{\text{DR}} \)
 - depends on the particle size, shape, orientation, density, and water content

- Cross-Correlation coefficient \(\rho_{hv} \)
 - correlation between horizontally and vertically polarized weather signals
 - decrease indicate variety of HM, tumbling, mixture water / ice, irregular shape, resonance size, rapid shape deformation, large hail

- Differential Phase as quality parameter
 - specific (propagation) + backscatter diff. phase

- Simultaneous mode: no LDR
Maximum Hail Size: Single Pol

- Max-Reflectivity or VIL in relation to freezing level height
- Echo-Top
- Probability of hail ... maximal expected hail size (severe hail index – depends on temperature-height weighting function and kinetic energy of hail)

(e.g. Waldvogel, 1979; Donavan and Jungbluth, 2007; Edwards and Thompson, 1998; Witt et al., 1998)
Maximum Hail Size: Dual Pol

- polarimetric characteristics of hailstones depend on their size, shape, falling behavior, and are strongly affected by the degree of melting and the probing radar wavelength.

- better quality of hail detection (FAR reduced)

- location of hail in the storm
 - including its height above ground

- S-band
 - hail differential reflectivity HDR (e.g. Aydin et al., 1986, Depue et al., 2007)
 - HCA (e.g. Park et al. 2009) - no hail size

- S/C/(X)-band:
 - melting hail – polarimetric characteristics of large hail
 (e.g. Ryzhkov et al., 2009, Borowska et al., 2010; Kumjian et al., 2010, Picca and Ryzhkov, 2011, Tabery et al., 2009)
Data: Dual Polarized Moments

C-band: resonance effects

Strong attenuation and differential attenuation in hail at C band further complicates the issue of hail detection / sizing
Data: Dual Polarized Moments

C-band: resonance effects

- Strong attenuation and differential attenuation in hail at C band further complicates the issue of hail detection / sizing

[Graph showing Z_{DR} for hailstones at 0°C]
Data: Dual Polarized Moments

C-band: resonance effects

- Strong attenuation and differential attenuation in hail at C band further complicates the issue of hail detection / sizing
Data: Dual Polarized Moments

C-band: resonance effects

C-Band: ZDR-Rho HV (Hailsize in cm)

10 cm slight lower rho, Lower ZDR

2.5 cm
Hail-diameter: 10cm

S-band – wet hail below freezing level

- **S-band**: large hail is characterized by high Z, low Z_{DR}, and low ρ_{hv}
- **C-band**: large hail is characterized by high Z, high Z_{DR}, and very low ρ_{hv}
- all radar frequencies: smaller wet hail has high Z_{DR}
Hail-diameter: 10cm

C-band – wet hail below freezing level

- S-band: large hail is characterized by high Z, low Z_{DR}, and low ρ_{hv}
- **C-band**: large hail is characterized by high Z, high Z_{DR}, and very low ρ_{hv}
- **all radar frequencies**: smaller wet hail has high Z_{DR}
Hail-diameter: 10cm
C-band – dry hail aloft
Hail-diameter: 10cm
S-band – dry hail aloft

Radar reflectivity (dBZ)

Differential reflectivity (dB)

Differential phase (deg)

Cross-correlation coefficient

CAPPI 5.5km
<0.9
Cross section
hail size 2.5 cm

- C-band
- S-band

<table>
<thead>
<tr>
<th>Z</th>
<th>ZDR</th>
<th>Z</th>
<th>ZDR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10km
Weak Convection – thermal plumes
C-band

0°C
Dry hail aloft
HAIL BACKSCATTERING EFFECTS WHICH AFFECT DUAL POL MOMENTS AND CORRESPONDING VERTICAL STRUCTURE
TBSS C-band
three scatter signature signal
LOW RhoHV due to ZDR gradient, SNR C-band
ZDR Column + Side-lobe effects

C-band

-20°C

High ZDR, Low RhoHV due to Resonance + melting hail

ZDR column updraft
vertical profile: hail: 2 - 10cm
$Z \geq 55\text{dBZ}$
vertical profile: hail: 2 - 10cm
\(Z \geq 55\text{dBZ} \)

S-band:
- \(Z = 60 \)
- \(Z_{\text{DR}} \)
- \(\rho_{\text{hv}} = 0.95 \)

C-band:
- \(Z = 2 \)
- \(Z_{\text{DR}} = 5 \)
- \(\rho_{\text{hv}} = 0.85 \)
Φ_{DP} hail size dependence for C-band
nonmonotonic radial dependencies of Φ_{DP}

- below freezing level
Φ_{DP} hail size dependence for C-band

S-band, PPI 0.5°
Hail-size: 10.8cm

monotonic radial increase of Φ_{DP}
Φ_{DP} hail size dependence for C-band

C-band, PPI 0.25°
Hail-size: 10.8cm

monotonic radial increase of Φ_{DP} hysteresis
Φ_{DP} hail size dependence for C-band

nonmonotonic radial dependencies of Φ_{DP}
Φ_{DP} hail size dependence for C-band

nonmonotonic radial dependencies of Φ_{DP}
Φ\(_{DP}\) hail size dependence for C-band

nonmonotonic radial dependencies of Φ\(_{DP}\)

associated with large raindrops originated from melting hail
Φ_{DP} hail size dependence for C-band

nonmonotonic radial dependencies of Φ_{DP}

K_{DP} for melting hailstones at 26°C

Graph showing K_{DP} / N (deg/km) vs. Particle diameter (cm) for different bands: S-band (blue), C-band (red), X-band (green).
Comparison of \(Z_{DR} \) and \(\rho_{hv} \) changes below wet bulb freezing level height for two hail classes:

<table>
<thead>
<tr>
<th></th>
<th>MEDIAN</th>
<th>Standard-Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large hail</td>
<td>Giant hail</td>
</tr>
<tr>
<td>(Z_{DR})</td>
<td>C band</td>
<td>+4dBZ</td>
</tr>
<tr>
<td>(Z_{DR})</td>
<td>S band</td>
<td>+1dBZ</td>
</tr>
<tr>
<td>(\rho_{hv}) C band</td>
<td>0.91</td>
<td>0.84</td>
</tr>
<tr>
<td>(\rho_{hv}) S band</td>
<td>0.94</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Comparison of \(\rho_{hv} \) at -10°C wet bulb temperature height for two hail classes:

<table>
<thead>
<tr>
<th>(\rho_{hv})</th>
<th>MEDIAN</th>
<th>Standard-Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Large hail</td>
<td>Giant hail</td>
</tr>
<tr>
<td>C band</td>
<td>0.95</td>
<td>0.82</td>
</tr>
<tr>
<td>S band</td>
<td>0.94</td>
<td>0.92</td>
</tr>
</tbody>
</table>
Conclusion

- location of hail within the storm
- vertical profiles of polarisation moments efficiently utilized for hail size discrimination
- C-band hail features are much more pronounced
- below freezing level:
 - strong increase in Z_{DR}
 - strong decrease in ρ_{hv}
- hail generation at -10 °C
 - strong decrease in ρ_{hv}
Ongoing Work

- extend dataset

- hail cases from Austria
 - C-band
 - additional small hail reports (D < 2cm)

- verification

- attenuation C band + nonmonotonic radial dependencies of Φ_{DP}

- trend analyses -> Nowcasting
Thank you for your attention!

rudolf.kaltenboeck@austrocontrol.at