Variants of meteorological conditions during large-scale rain floods

Marek Kašpar (1), Miloslav Müller (1,2)
(1) Institute of Atmospheric Physics AS CR
(2) Charles University in Prague, Faculty of Science
Selection of flood events

Assumption
Rain floods on major rivers in Central Europe are caused by widespread and relatively intense rainfalls which often last several days.
Müller et al., NHESS, 2009, 441-450

Rainfalls are usually linked with circulation conditions in synoptic scale.
Müller and Kaspar, J. Phys. Chem. Earth., 2010, 484-490

Selection criterion
- Sum of the products of the areas of affected catchments (>100 km²) and the return periods of respective peak flows
- Lower threshold value of the criterion was applied.
- 41 events were selected in the period 1951-2010.
- Flood events vs. rain events
 Kaspar and Müller, NHESS, 2008, 1359-1367
 - both sets almost identical;
 - rankings of their magnitudes different.
Methods

Anomalies in (thermo)dynamic variables
- Anomaly
 Cavazos, J. of Climate, 1999, 1506-1523
 - area of climatologically low or high values
- Meso-alpha scale anomalies
 Müller et al., Atmos. Research, 2009, 308-317
 - typical of widespread and steady rains;
 - in specific regions and stages of the events.

Divisive clustering of the events
- Criterion of similarity
 - magnitude (mean P) of typical anomalies
- PC analysis
 - reduction of considered anomalies (40/238)
- Optimization of clustering
 - reduction of considered PCs using cophenet & inconsistency coeffs. & scree test (8/40)

Data
- NCEP/NCAR reanalysis, 1951-2010, Europe & N. Atlantic, resolution 2.5°.
Variants of conditions

Thermobaric conditions

Mean geopotential (850, 500 hPa) & temperature (850 hPa)
Variants of conditions

Thermobaric conditions

Mean geopotential (850, 500 hPa) & temperature (850 hPa)

Relative vorticity

Typical anomalies
Variants of conditions

Thermobaric conditions

Mean geopotential (850, 500 hPa) & temperature (850 hPa)

Typical anomalies

SW-NE temperature gradient

T [°C]

-10 -5 0 5 10 15 20 25 30

D-2

D+1, 500 hPa

D+1, 850 hPa

cold mean P warm
cold mean P warm
Variants of conditions

Thermobaric conditions

Typical anomalies

Mean geopotential (850, 500 hPa) & temperature (850 hPa)

Vertical velocity in p-system

$T \quad [\degree C]$

Vertical velocity in p-system

<table>
<thead>
<tr>
<th>Mean geopotential (850, 500 hPa) & temperature (850 hPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical velocity in p-system</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
</tr>
</tbody>
</table>

mean P
Variants of conditions

Thermobaric conditions

Typical anomalies

(a) Convergence of moisture

(b) W-E gradient of meridional wind
Variants of conditions

Thermobaric conditions

Typical anomalies

(a) Convergence of moisture

(b) W-E gradient of meridional wind
Mean geopotential (850, 500 hPa) & temperature (850 hPa)

T [°C]
II

Variants of conditions

Thermobaric conditions

Typical anomalies

Mean deopotential (850, 500 hPa) & temperature (850 hPa)

S-N gradient of zonal wind
Variants of conditions

Thermobaric conditions

Mean geopotential (850, 500 hPa) & temperature (850 hPa)

Typical anomalies

S-N gradient of zonal wind

Mean geopotential (850, 500 hPa) & temperature (850 hPa)
Variants of conditions

Thermobaric conditions

Mean geopotential (850, 500 hPa) & temperature (850 hPa)
III Variants of conditions

Thermobaric conditions

Typical anomalies

Mean geopotential (850, 500 hPa) & temperature (850 hPa)

SW-NE flow of heat

SW-NE flow of moisture

T [°C]

-10 -5 0 5 10 15 20 25 30

mean P
Variants of conditions

Thermobaric conditions

Mean geopotential (850, 500 hPa) & temperature (850 hPa)

Typical anomalies

Lagrangian tendency of geopotential
IV

Variants of conditions

Thermobaric conditions

Mean geopotential (850, 500 hPa) & temperature (850 hPa)
IV

Variants of conditions

Thermobaric conditions

Mean geopotential (850, 500 hPa) & temperature (850 hPa)

Typical anomalies

Specific moisture

D, 850 hPa

Dry
mean P
Moist

T [°C]

-10
-5
0
5
10
15
20
25
30
IV

Variants of conditions

Thermobaric conditions

Typical anomalies

Mean geopotential (850, 500 hPa) & temperature (850 hPa)

Specific moisture

T [°C]

30 25 20 15 10 5 0 -5 -10

D-2
Selection of flood events
- 41 events 1951-2010;
- criterion: area of affected catchments & return period of peak flows.

Variants of meteorological conditions
- divisive clustering of the events according to the magnitude of meso-α anomalies;
- 4 consistent clusters of 2nd level.

2 cyclonic variants (I + II):
 Anomalies connected with strong baroclinity and conditions favorable for production and orographic enhancement of precipitation.

1 transitional variant (frontal zone & cyclone, III):
 Initially, anomalies connected with arriving of warm and moist air.

1 non-cyclonic variant (IV):
 Anomalies connected with moist air at lower levels.

Cyclonic variants (especially I) are the most noticeable and dangerous in respect of the magnitude of anomalies, floods and affected area.
Conclusions

- **Selection of flood events**
 - 41 events 1951-2010;
 - criterion: area of affected catchments & return period of peak flows.

- **Variants of meteorological conditions**
 - divisive clustering of the events according to the magnitude of meso-α anomalies;
 - 4 consistent clusters of 2nd level.

- **Possible outlook**
 - application of a fuzzy clustering approach;
 - confirmation of applicability in other regions;
 - better comparison of various regions in view of circulation causes;
 - detection of past flood events in case of lacking direct data
See also posters A5/151 describing some variants by moisture fluxes and Hovmöller diagrams across Central European catchments and A6/231 containing comparative study of 2010 rain floods.