

Convection Initiation – Nowcasting by data fusion and its Verification

<u>Dennis Stich</u>¹, Caroline Forster¹, Tobias Zinner², and Arnold Tafferner¹

ECSS 2011 - 6th European Conference on Severe Storms Palma de Mallorca, Spain, 3-7 October 2011

in der Helmholtz-Gemeinschaft

Outline

Motivation & general idea

Cb-TRAM (**C**umulonim**b**us **TR**acking **A**nd **M**onitoring)

CI-Verification

Additional data sources

Motivation

Aviation purposes

Cb-TRAM as basic tool

Adding non-satellite fields for further development

Basic Tool (Cb-TRAM) Verification

Basic Tool (Cb-TRAM) Verification

Basic Tool (Cb-TRAM) Verification

Cb-TRAM + Verification
Additional data

CI-NOW – a CI detection and nowcasting tool

in der Helmholtz-Gemeinschaft

Cb-TRAM - Cumulonimbus TRacking And Monitoring

Cb-TRAM - Cumulonimbus TRacking And Monitoring

Used MSG (rapidscan) data:

WV 6.2

IR 10.8

IR 12.0

HRV

Detection stages:

1: Convection Initiation (CI)

development in HRV

IR 10.8 cooling

2: Rapid development

WV 6.2 rapid cooling

(> 1K/15min)

3: Mature storms

T 6.2 - T 10.8

HRV texture

Extrapolation up to 60 min (here 30 minute nowcast plotted)

Description: Zinner et al., 2008

Slide 9

ECSS 2011 > Dennis Stich > 7 October 2011

Cb-TRAM - Cumulonimbus TRacking And Monitoring

Used MSG (rapidscan) data:

WV 6.2

IR 10.8

IR 12.0

HRV

Detection stages:

1: Convection Initiation (CI)

development in HRV

IR 10.8 cooling

2: Rapid development

WV 6.2 rapid cooling

(> 1K/15min)

3: Mature storms

T 6.2 - T 10.8

HRV texture

Lightning (LINET)

Extrapolation up to 60 min (here 30 minute nowcast plotted)

Description: Zinner et al., 2008

ECSS 2011 > Dennis Stich > 7 October 2011

Contingency table Observed				
		yes	no	
Forecast	yes	hit	false alarm	
	no	miss	correct negative	

Cb-TRAM analysis used for comparison with the 15, 30, 45, and 60 minutes Cl-stage nowcasts

Pixel based

Requires perfect matching!

Contingency table				
Observed				
		yes	no	
Forecast	yes	hit	false alarm	
	no	miss	correct negative	

Pixel based

Requires perfect matching!

Object based

double penalty problem

Contingency table				
	Observed			
		yes	no	
Forecast	yes	hit	false alarm	
	no	miss	correct negative	

Pixel based Requires perfect matching!

Object based

double penalty problem

Fuzzy + Object based

Contingency table				
Observed				
		yes	no	
Forecast	yes	hit	false alarm	
	no	miss	correct negative	

Object based

Different versions shown:

Object based with Cb stage 1 analysis objects for the nowcast overlap

Developing Object based without Cb stage 1 analysis objects for the nowcast overlap → just developing cells

Results for the summer 2009, 15 May to 31 August				
	15 min	30 min	acc 15-60 min	
Object based POD	0,5919	0,4212	0,4093	
Object based FAR	0,6109	0,7545	0,5448	
Dev Object POD	0,2281	0,1992	0,1697	
Dev Object FAR	0,8853	0,8841	0,8176	

POD = hits / (hits + misses)

FAR = false alarms / (hits + false alarms)
CSI = hits / (hits + misses + false alarms)

Additional data sources

Testing the additional information provided by:

- more satellite channels (SATCAST IFs)
- VERA data (e.g. MFC, equivalent potential temperature)
- COSMO-EU data (e.g. updraft, an instability measure)
- COSMO-DE data (e.g. thunderstorm probability)
- LINET data

Vienna Enhanced Resolution Analysis

More information and references:

www.univie.ac.at/amk/vera/

EPOT June 12 2009 15 UTC

EPOT May 25 2009 15 UTC

More information and references:

www.univie.ac.at/amk/vera/

Statistics calculated for ~ 35.000 CI cells over 87 days in summer 2009 (May 15 - 31 August)

EPOT < 36 °:

2.2 % of all hits

11.2 % of all false alarms

EPOT < 41°:

6.1 % of all hits

21.6 % of all false alarms

■ hits/hits+false alarms

COSMO-EU

Omega in 500 hPa:

Dark shading represents updraft areas, light shading downdraft areas

VERA & COSMO_EU

First Results for Combinations:

Percentage of CI cells filtered with the additional data sources

	36° < Epot < 41°	false alarms	hits
Epot < 36°		11.2 %	2.2 %
Epot < 36°	MFD > 0	16.0 %	3.5 %
Epot < 36°	$\omega_{500} > 6$	14.5 %	3.0 %
Epot < 36°	$\omega_{400-600} > 0$	14.0 %	3.0 %
Epot < 36°	ω ₅₀₀ > 0 & MFD > 0	13.7 %	2.9 %
Epot < 36°	$\omega_{400-600} > 0 \& MFD > 0$	12.5 %	2.5 %

[MFD] = 10^-4 g/(kg s) & [ω] = hPa/h

Additional data sources

Testing the additional information provided by:

- more satellite channels (SATCAST IFs)
- VERA data (e.g. MFC, equivalent potential temperature)
- COSMO-EU data (e.g. updraft, an instability measure)

NEXT STEPS:

- COSMO-DE data (e.g. thunderstorm probability)
- LINET data

Data fusion (e.g. fuzzy logic)

Verify the abilities for the different products and their fusion

