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%9 Tropopause folding
Stratospheric Intrusions
and Deep Convection
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ﬁom the perspective of the
ingredients based methodology

tropopause folds can affect
all three ingredients
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Tropopause folds
dry air static stability

warm moist air

in the boundary layer characteristic of
(Danielsen 1968) the stratosphere
Roberts 2000 (Danielsen 1968)

Griffiths et al. 2000)

potential capping
instability environment

Convective storms



How Is deep convection
modulated by tropopause folds?

How the structure of tropopause
folds affect the location, intensity
and morphology of the resulting
convection?
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MST radar and tropopause folds
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183 tropopause folds were identified
in MST data between 2006—2011
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RADARNET and convective storms




095 convective storms were identified
N RADARN ET data between 2006—2011
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The annual cycle does not appear to provide an
explanation for the minimum in convective storms
iIn February—April, since the sounding characteristics are

not substantially different from the more active period
iIn November—January
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Multicellular lines were most prevalent

with 298 cases(43.5% of all convective storms), followed
by 227 isolated cells (31.1%)

monthly percentage of
the number of convective storms
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Tropopause folds and convective storms



Main maximum in December and a secondary

one in September, with a minimum in March
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Conclusion: more organized storms tend to form in
environments favorable for synoptic-scale ascent
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