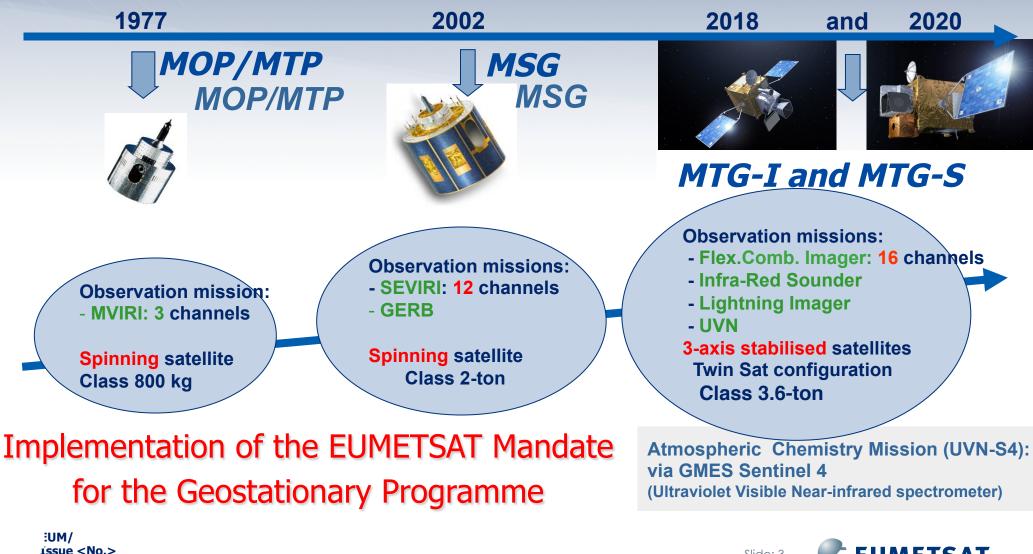


Geostationary Lightning Observations in Support of NWC and Severe Weather Monitoring

Jochen Grandell, Marcel Dobber and Rolf Stuhlmann

European Severe Storms Conference, Helsinki, Finland 5 June 2013

:UM/ Issue <No.> <Date>


Slide: 1

Topics of Presentation

- Quick introduction to Meteosat Third Generation (MTG)
- Geostationary lightning imaging
 - Why we do it...?
- MTG LI instrument
 - Main characteristics and status update
- Lightning Imager Products for direct dissemination
 - Flashes
 - Accumulated products (for density plots)
- User readiness
 - Access to proxy data
- Summary

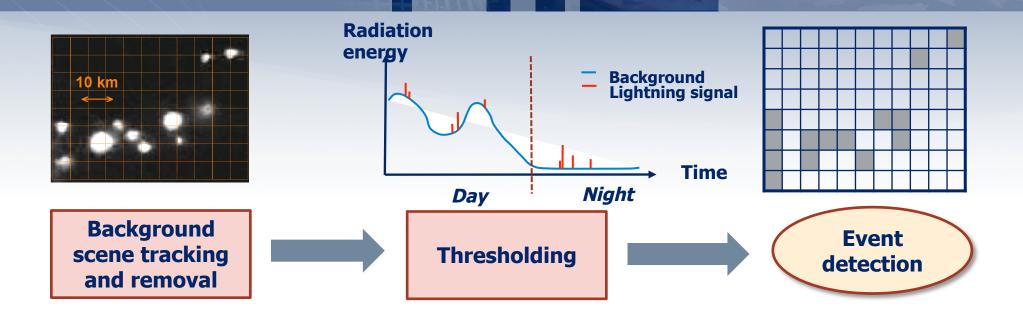
MTG to Secure Continuity and Evolution of EUMETSAT Services

<Date>

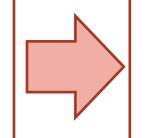
Geostationary lightning imaging – objectives and benefits

The LI on MTG measures Total Lightning: Cloud-to-Cloud Lightning (IC) and Cloud-to-Ground Lightning (CG)

Main benefit from GEO observations: <u>homogeneous</u> and <u>continuous</u> observations delivering information on location and strength of lightning flashes to the users <u>with a timeliness of 30</u> <u>seconds</u>


Main objectives are to detect, monitor, track and extrapolate in time:

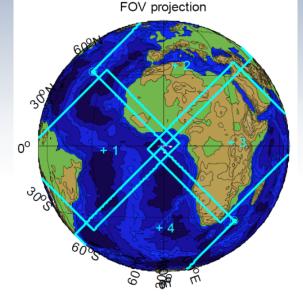
- Development of active convective areas and storm lifecycle
- Lightning climatology
- Chemistry (NOx production)

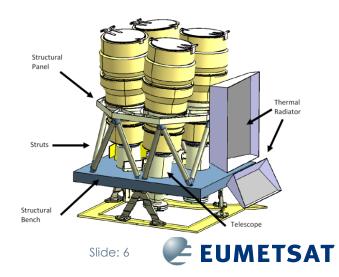

Complementary to existing and future ground-based systems (LLS):

- Clearly some applications are locally better served by ground-based systems, if available.
- On the other hand, some applications are better served by a uniform and constant observation from space, and if no good-quality ground based data is available

From a Lightning Optical Signal to MTG LI Events

- True lightning events (triggered by a lightning)
- False events (not related to lightning)


False event filtering needed in LO-L1 processing



Lightning Imager (LI) main characteristics

LI main characteristics:

- Measurements at 777.4 nm
- The instrument works in a staring mode, detecting lightning events within its FOV of its 4 cameras
- Coverage close to visible disc (instantaneous view)
- Integration time 1 ms, based on lightning optical pulse characteristics
- Ground sample distance at SSP 4.5 x 4.5 km => 4.7 million pixels
- Background subtraction and event detection done on-board (real time processing at 1 kHz)

MTG LI baseline products disseminated to users

Groups/Lightning Strokes

- Spatially neighbouring events in the same or neighbouring 1 ms integration frame
- Flashes
 - Spatially/temporally clustered groups/strokes (up to 330 ms and/or 16.5 km)

Accumulated products

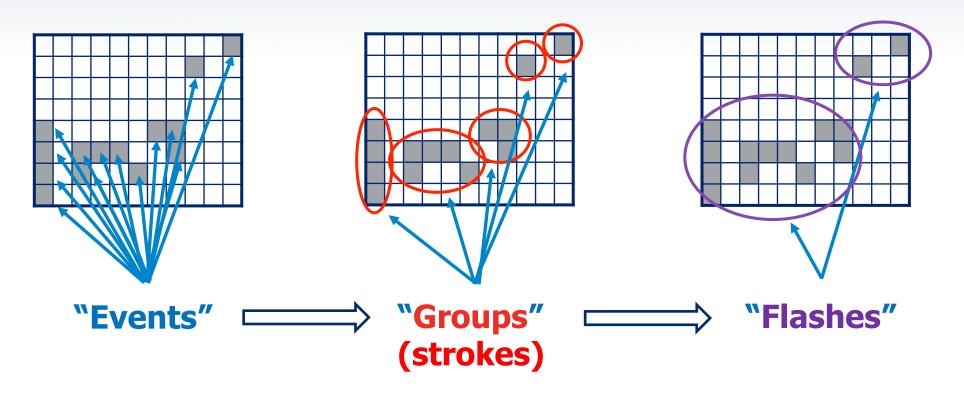

- Accumulated flashes & radiance
- Can be employed to obtain a <u>density product</u>
- Integration period: 30 seconds, can be stacked for longer times

Illustration on flash clustering on the next slide!

Lightning Imager Groups (strokes) and Flashes

Example/Conceptual representation of a Flash processing sequence:

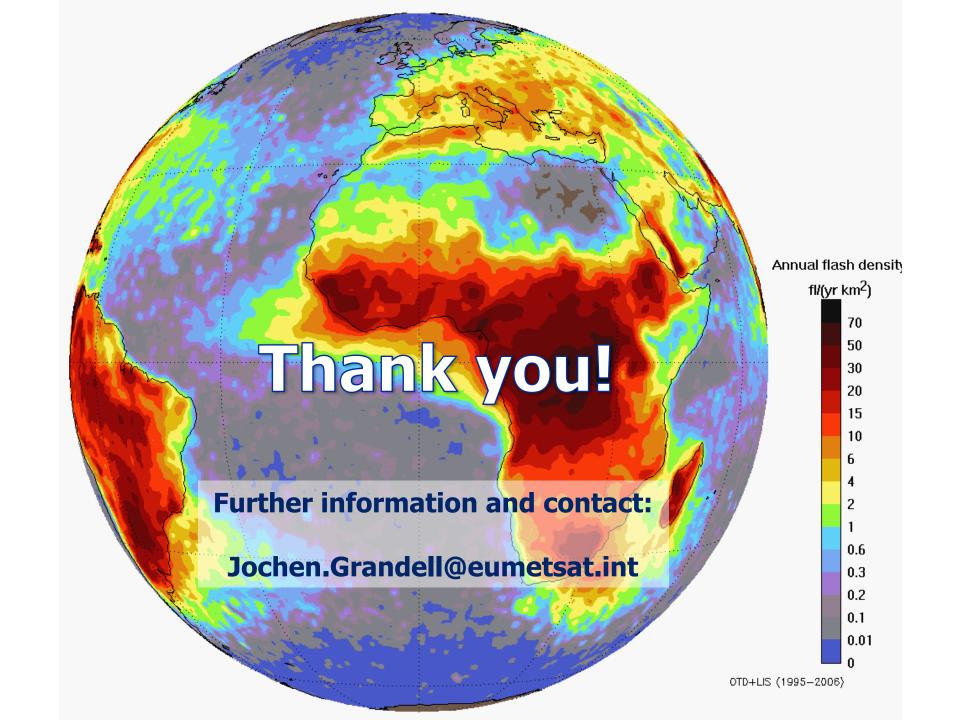
User readiness - Background

- Since MTG Lightning Imager is a new instrument, user readiness is a one of the key issues requiring attention
 - Need to **inform** potential future data users
 - Need to **prepare** these users to what is available
 - Need to **train** these users in using the products
- How to achieve this...?
 - By providing potential users LI "proxy data" well in advance of operations
 - Aiming at a realistic LI experience, without the real spacebased osbervation available

Ll proxy data

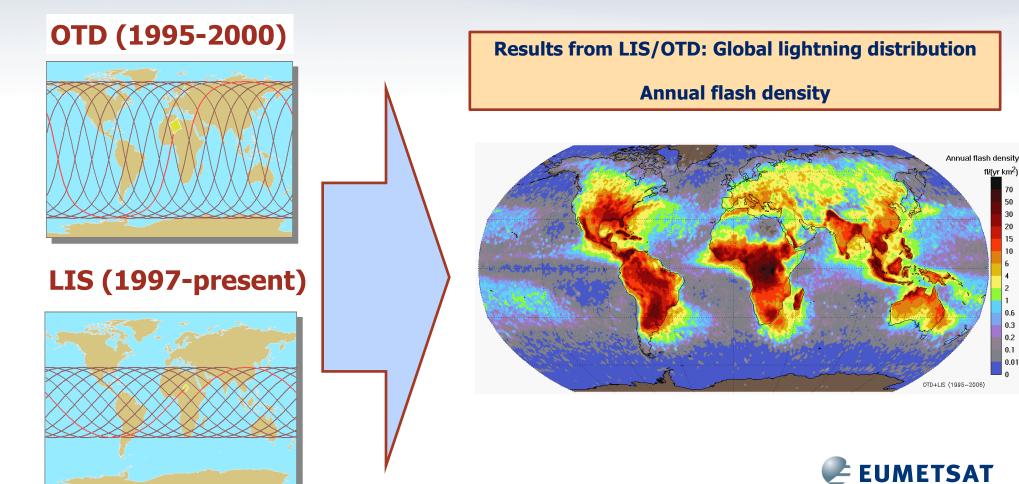
- Proxy data in development, to allow real-time application for forecasters
- Based on data comparisons between ground-based LINET and Lightning Imaging Sensor^(*) observations
 - Modeling of MTG LI optical signals by transformation of LINET RF stroke data into optical groups – requires the creation of additional groups based on LIS/LINET statistics
 - Adjustment of the proxy data generation to the varying LINET baselines in Europe
 - To be available both as an "archive product", as well eventually as a Near Real Time proxy data product
 - European wide LINET coverage as a baseline

(*) LIS – a spaceborne lightning instrument on LEO orbit



- Meteosat Third Generation (MTG) will secure continuity and evolution of EUMETSAT geostationary services from 2018 onwards
 - One of the new instruments on MTG is the Lightning Imager (LI) providing continuous lightning observation (CG+CC) over almost the full disk (at 0 deg).

- Instrument prime selected (Selex Galileo), KO in July 2012
- Products disseminated to users:
 - Flashes (with groups/strokes)
 - Accumulated products (flashes & radiance)
- User readiness activities to be more in the focus in the years to come
- Proxy data in development, with potential for NRT applications


MTG Space Segment Configuration

- Twin Satellite Concept, based on 3-axis platforms
 - 4 Imaging Satellites (MTG-I) (20 years of operational services)
 - 2 Sounding Satellites (MTG-S) (15.5 years of operational services)
- Payload complement of the MTG-I satellites
 - The Flexible Combined Imager (FCI)
 - The Lightning Imager (LI)
 - The Data Collection System (DCS) and Search and Rescue (GEOSAR)
- Payload complement of the MTG-S satellites
 - The Infrared Sounder (IRS)
 - The Ultra-violet, Visible and Near-infrared Sounder (UVN)

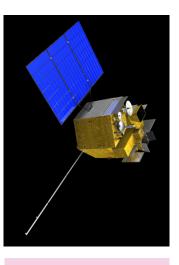
Lightning Detection from Space – from LEO to GEO

Feasibility of lightning detection from space by optical sensors has been proven by NASA instruments since 1995 on low earth orbits (LEO)

...Air Traffic is one area of application, and not just around major airports...

Lightning Detection from Space – from LEO to GEO

GEO lightning missions in preparation by several agencies (in USA, Europe, China) for this decade... ...all of these are building on LIS/OTD heritage


Geostationary Lightning Mapper (GLM) on GOES-R (USA)

Lightning Imager (LI) on MTG (Europe) Geostationary Lightning Imager (GLI) on FY-4 (China)

2018 ⇒

2014?

2015 ⇒

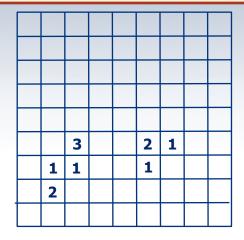
MTG-LI User Products – Disseminated (2)

- Accumulated products from a 30 second buffer and resampled to the 2-km FCI-IR grid
- Accumulated flashes
 - **Events** define the <u>extent</u> in the product
 - <u>Flashes</u> define the <u>values</u> in the product
 - Flash counts in the IR grid divided by the number of LI grid elements involved in each flash (= allows integration over the full or sub-grid to get the correct total flash counts)

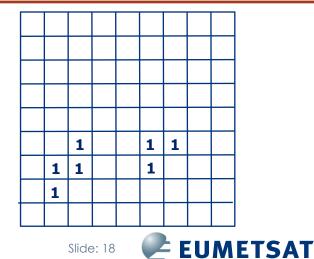
Accumulated flash index

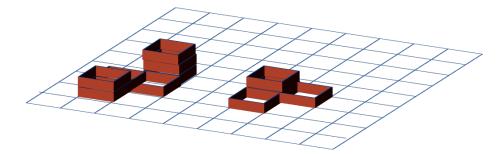
- Same as above but without division with involved LI grid elements (= answers the question, "how many flashes affect <u>this</u> pixel")
- Accumulated flash radiance

Illustration on next slide(s)!



Accumulated flashes, status at t = 10s

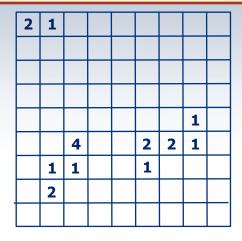



= Events in Flash #1

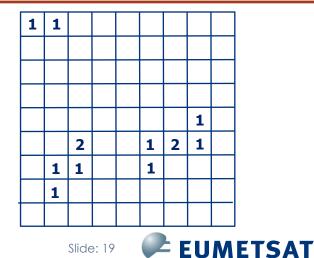
Event count in the 30 sec buffer (still in LI grid)

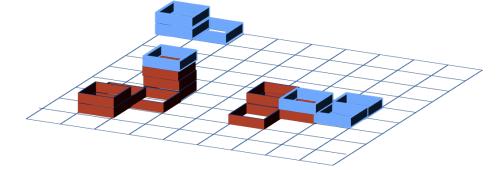
Flash count in the 30 sec buffer (still in LI grid)

:UM/ 13308 <N0.> <Date>



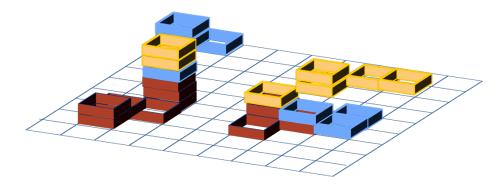
Accumulated flashes, status at t = 20s



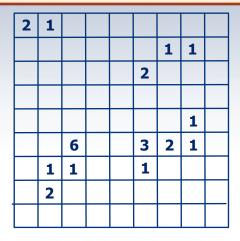

= Events in Flash #2

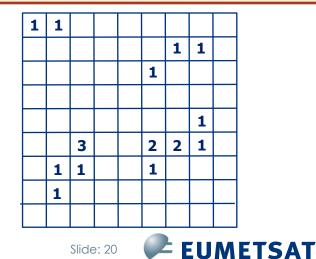
Event count in the 30 sec buffer (still in LI grid)

Flash count in the 30 sec buffer (still in LI grid)



:UM/ 13308 <N0.> <Date>


Accumulated flashes, status at t = 29s


- = Events in Flash #2
 - = Events in Flash #3

Event count in the 30 sec buffer (still in LI grid)

Flash count in the 30 sec buffer (still in LI grid)

:UM/ 13308 <N0.> <Date>

MTG-LI User Products – Disseminated (3)

Timeliness (goal) is 30 seconds for the L2 products to be disseminated !!

Shared application areas of GLM / MTG LI (1)

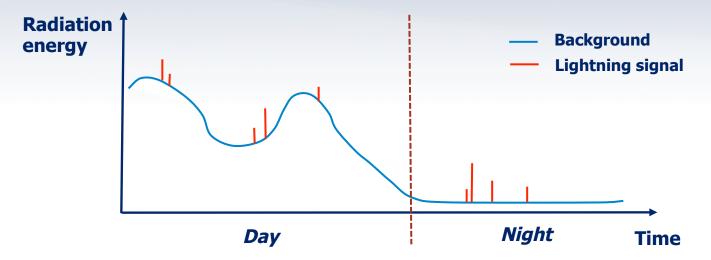
- Clearly some applications listed below are locally better served by ground-based systems, if available.
- On the other hand, some applications are better served by a uniform and constant observation from space, or if no good-quality ground based data is available

Application areas as follows:

- Predict onset of tornadoes [GLM specific], hail, flash floods
 - Current tornado lead time -13 min national average [in the US]
- Improve airline/airport safety
 - routing around thunderstorms, saving fuel, reducing delays
 - In-cloud lightning lead time of impending ground strikes, often 10 min or more

:UM/ issue <No.> <Date>

Shared application areas of GLM / MTG LI (2)


- Track thunderstorms, warn of approaching lightning threats
 - USA: Average fatalities are ~51, Lightning strikes responsible for >500 injuries per year (second leading source after flooding)

- Global: An estimated 24,000 people are killed by lightning strikes around the world each year and about 240,000 are injured
- 90% of victims suffer permanent disabilities, long term health problems, chiefly neurological
- Provide real-time hazard information, improving efficiency of emergency management
 - Large venue public safety, hazardous material safety, & outdoor/marine warnings, forest fire warnings
- NWP/Data Assimilation
- Multi-sensor precipitation algorithms
- Climate applications: role of thunderstorms and deep convection in global climate
- Seasonal to interannual (e.g. ENSO) variability of lightning and extreme weather
- Provide new data source to improve air quality / chemistry forecasts (NOx)

Detection of a Lightning Optical Signal

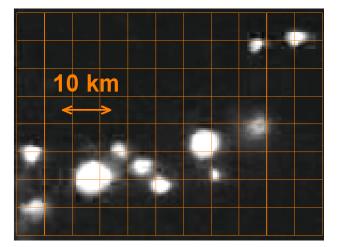
• Lightning with a background signal changing with time:

- Lightning on top of a bright background is not recognised by its bright radiance, but by its transient short pulse character
- For detection of lightning, a variable adapting threshold has to be used for each pixel which takes into account the change in the background radiance
- (in LIS: background calculated as a moving average)

Challenge for processing: "False Events" (noise)

- Noise can be (instrument) internal or external depending on the mechanism
- "Internal" noise:
 - Electronic noise
 - Thermo-mechanical noise
 - Stray light noise
 - Ghost noise?

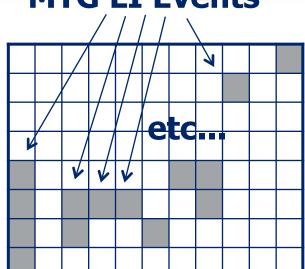
- "External" noise:
 - Jitter (spacecraft motion)
 - Cloud radiation (background in general)
 - Sun glint
 - Particles flux


Rough order of severity (based on GLM analysis):

Spacecraft motion, Photon/electronics noise, Sun glint, Radiation

Spatial Pattern of Lightning from Space

• Characteristics:


- Size scales with cloud thickness above source
- Mean area of lightning pulses corresponds well to a 10 km x 10 km footprint

Optical pattern of lightning on cloud surface (observed from space shuttle)

:UM/ Issue <No.> <Date>

- 1. Background scene tracking and removal
- 2. Thresholding
- 3. Event detection

Possible schema of detected lightning pulses

"MTG LI Events"

Lightning Imager (LI) Status Update (2)

- MTG LI Phase B2 has been kicked off:
 - beginning of July 2012
- Selex Galileo are preparing for SRR (System Requirements Review):
 1st part end of October 2012, 2nd part during spring 2013
- LI instrument PDR (Preliminary Design Review)
 - not before October 2013.

MTG-LI User Products – NOT Disseminated

- There are products resulting from the L1b processing, which are:
 - not disseminated to users
 - ...but are archived

L1b Events

• with geolocation, UTC time stamp and calibrated radiance, with a flag indicating false events

• L2 Events

• As L1b Events, but without false events

Background images

- Every 60 seconds all detector elements triggered
- Mainly used for image navigation
- :UM/ issue <No.> <Date>
 • Other uses currently TBC

MTG Lightning Imager Science Team (LIST)

- In order to support activities for establishing a scientific baseline for the operational Lightning Imager (LI) L2 processor, a MTG LI Science Team was set up in 2009.
- The main objectives of this (external) team is to:
 - Support EUMETSAT in the implementation of the MTG LI L2 processor.
 - Prepare and update the <u>Algorithm Theoretical Basis Document</u> (ATBD).
 - Also guidance in issues related to L1b are to be expected (especially regarding false event filtering)
- ATBD:
 - V1 was reviewed at the Preliminary Design Review (PDR) concluding the MTG system Phase B activities in May-June 2011
 - V2 to be released in early 2013

MTG Lightning Imager Science Team (LIST)

• The MTG LI Science Team, led by EUMETSAT, currently consists of the following members:

- Graeme Anderson (MetOffice United Kingdom)
- Daniele Biron (USAM Italy)
- Eric Defer (LERMA France)
- Ullrich Finke (U. Hannover Germany)
- Hartmut Höller (DLR Germany)
- Philippe Lopez (ECMWF)
- Douglas Mach (NASA USA)
- Antti Mäkelä (FMI Finland)
- Dieter Poelman (RMI Belgium)
- Serge Soula (Laboratoire d'Aerologie France)
- In addition, invited experts are contributing to individual meetings.

Pseudo-GLM as a GOES-R initiative for user readiness (1)

- NOAA has a wider "GOES-R Proving Ground" framework of activities, covering all GOES-R missions
- Within this framework, a straightforward approach of creating "pseudo-GLM" data based on averaging and resampling LMA lightning density data has been developed:

http://weather.msfc.nasa.gov/sport/goesrpg/pglm.html
http://www.goes-r.gov/downloads/2012-GLM/day2/SPC-pg.pdf

- This **pseudo-GLM (PGLM)** data is provided to forecasters (every 2 min with a 3-4 min latency) to support their daily work.
- The data has been demonstrated to users in various occasions, such as the "Hazardous Weather Testbed"

Pseudo-GLM as a GOES-R initiative for user readiness (2)

- The idea has been to make the forecaster end-user aware of and used to the kind of product that would be available from the GLM.
- The pseudo-GLM data is not "proxy" in a sense that it could imitate the optical signal of lightning very closely
- Good training material (webinar) available online:

http://weather.msfc.nasa.gov/sport/training/

- A similar activity but using the existing proxy data methodology with the ground-based LINET data in Europe is planned
 - A near-real time application of the proxy data will be needed

• With real proxy data, we could aim closer to realistic LI UM/ USSUE <No.> Observation characteristics
Slide: 32

Lightning Imager (LI) Status Update (1)

- The MTG satellite PDR (Preliminary Design Review) was held in May 2012.
 - The LI instrument was not part of this review, only MTG-LI interface requirement documents were reviewed.
- LI industrial consortium consolidated via ITT, concluded by April 2012.
- LI instrument prime contractor is Selex Galileo in Italy.
- LI mission prime activities are still to be allocated.
 - This includes the 0-1b data processing software.
 - These activities will most likely be allocated to either Thales (MTG prime contractor) or to Selex Galileo (TBC).

Next steps

- Define in more detail the requirements for the NRT-LI proxy data
 - Coverage, periodicity, timeliness, grid...
- Establish contacts to **operational forecasters** within/through:
 - National Met Services
 - Other forums (ESSL Testbed, ATM, ...)
- Define concrete steps for establishing a trial based on NRT-LI proxy data