

Aalto University School of Electrical Engineering

Automatic hazard level estimation of convective storms using emergency data

Pekka Rossi¹, Vesa Hasu², Antti Mäkelä¹ and Jarmo Koistine¹

¹Finnish Meteorological Institute ²Aalto University, School of Electrical Engineering

Background

- Finnish municipal emergency centers were combined into a nationwide center in 2001 – 2005
 - The time of the report, the exact event location, the classification of the emergency type are available in real time
- New largely unused source of information
 - Disasters caused by lightning, heavy precipitation, strong wind etc.
- Need for algorithms that utilize emergency data in nowcasting and warning products

Emergency other data sources

 MCS on 29.7.2010: 6h radar based rainfall accumulation vs. emergency report data

Object oriented convective storm tracking

•A natural way for severe weather nowcasting and for constructing warning products

•Objects can be supplemented with various attributes, e.g., age, intensity or the <u>amount</u> <u>of disasters they have</u> <u>possibly caused</u>

Attaching emergency event information to convective storm objects

- The *relatedness* r(e,m):
 - Describes how much an emergency event *e* is related to a convective storm track *m*
 - r(e,m) is a function of the minimum distance d(e,m)
 - $d(e,m) = 0 \rightarrow r(e,m) = 1$
 - $d(e,m) = \infty \rightarrow r(e,m) = 0$
 - It is computed between each storm track and emergency report

UTE

Attaching emergency event information to convective storm objects

- To preserve the past relatedness information in convective cell tracks, individual relatedness values are converted to *hazard level* values
 - The current hazard level h(m,t) for the *m*th convetive storm track at time *t* is computed recursively using:
 - Previous hazard level value h(m,t-1)
 - Sum of current relatedness values
 - Moreover, the hazard level is weighted with:
 - Population density information
 - Hypothetical emergency report delay

Attaching emergency event information to convective storm objects

The recursive equation for hazard level computation

$$h(n)(h)(i)(i)(m)(m)(i) = \sum_{i}^{\infty t(m_{i,i}, i)} (i)(i)$$

- • λ is the forgetting factor 0 < λ < 1,
 - Describes how fast the hazard level decays
- • $w(e_{i,t})$ is population density dependent weight
- $\Theta^{(m, j)}$ is the delay scaling.
 - Delayed emergency events have smaller impact on the hazard level

Hazard level information as time series

Hazard level information as time series

Conclusions

- Emergency report data is a promising additional source of information for object oriented weather forecasting and for creating severe weather warning products
- Hazard level can be expressed practically with a color coding of storm cells without burdening the forecasters with excess information

Conclusions

- The algorithm exemplifies how tracked convective storms can be supplemented with novel information sources
 - In the future, we could supplement convective storms with other unused information sources with high spatial and temporal accuracy:
 - Real time outage information from power transmission companies
 - On-line reports from storm chasers
 - Social media information

Population density weighting

- Population density weighting is necessary, since the intensity of the report flow depends strongly on population density
 - At median population density, the weight for an ³ emergency report is 1 ^{2.5}
 - At sparsely populated areas the weight is approximately 10 times more than at densely populated areas

