4™ European Conference on Severe Storms 10 - 14 September 2007 - Trieste - ITALY

MOBILE DOPPLER RADAR OBSERVATIONS OF TORNADOES
Howard B. Bluestein

School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Suite 5900,
Norman, Oklahoma 73072, U. S. A., hblue@ou.edu

(Dated: April 16, 2007)

I. INTRODUCTION

Over the past decade, our research group has been
using truck-mounted Doppler radars from the University of
Massachusetts to learn how tornadoes form and to map the
wind field in them and in dust devils (see reference list).
Remote sensing of the reflectivity and wind fields associated
with tornadoes has proven to be a safe and effective way of
documenting tornado behavior and structure. It is necessary
to get relatively close to tornadoes, because at long range the
near-surface portion of the tornado lies underneath the radar
beam and the spatial resolution is degraded owing to beam
spreading, and it is useful to be close enough to obtain
simultaneous visual imagery.

The purpose of this presentation is to highlight the
most significant results from our recent field programs
(since 1999). Results not related to intense atmospheric
vortices and results from field programs using other mobile
Doppler radars (e.g., IHOP, the DOWs, the SMART-Rs,
etc.) are detailed elsewhere.

II. PRESENTATION OF RESEARCH

The analyses summarized herein are based on data
collected by a W-band (3-mm wavelength) radar and a
polarimetric, X-band (3-cm wavelength) radar. The former
has a half-power beamwidth of only 0.18°, which allows for
an azimuthal resolution ~ 10 m at 3 km range. The pulse
length is either 15 m or 30 m, depending on the sensitivity
required; W-band radiation is severely attenuated in the
presence of precipitation. The latter has a half-power
beamwidth of 1.25°, which allows for a coarser look at a
broader area surrounding the tornado. Polarization diversity
allows for an analysis of the type of scatterer in the radar
volume; in a tornado, it is possible to discriminate between
raindrops and debris (Ryzhkov et al. 2005).

III. RESULTS AND CONCLUSIONS

The most important findings from our recent field
programs are as follows:

a. Tornadogenesis in one case was found to follow
a 0.5 km - scale jet-like burst along the rear-
flank gust front, which produced a small-scale
bow-echo-like feature; coincidentally, a vortex
formed along its leading edge. The vortex then
interacted with a larger-scale vortex and
evolved into a tornado.

b. The reflectivity distribution inside tornadoes
near the ground had a 100-m scale weak-echo
hole, which closed up in the lowest few tens of
meters above the ground. The wind speed in the
core of one tornado decreased from a maximum

~25m AGL (~ 78 m s™) by ~ 20 — 25% from
that at the ground. Horizontal vortices were
evident along one side of the tornado vortex and
a jet of outflow was found ~ 100 m AGL on the
other side. Radial bulges in the weak-echo eye
were found in a few tornadoes.

c. The inner ring of reflectivity in tornadoes
appears to be caused by scattering from
airborne debris particles, while outer spiral
bands are caused by precipitation particles.

d.  The radial distribution of wind in tornadoes is
like that in a Burgers — Rott vortex. Questions
still remain about the representativeness of
scatterer motion as tracers of the wind field
when centrifuging is significant.

FIG. 1: Depiction of the evolution of radar reflectivity in a
developing tornado. Data from the U. Mass. W-band radar. From
Bluestein et al. (2003a)

FIG. 2: Vertical cross section of Doppler velocity (m s') through
the center of a tornado during its mature stage. Data from the U.
Mass. W-band radar. From Bluestein et al. (2007a).
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FIG. 3: Horizontal cross sections of (a) radar reflectivity factor
(dBZ), (b) differential reflectivity Zpi (dB), (c) cross-correlation
coefficient (pyy), and (d) Doppler velocity (m s') in a mature
tornado. Data from the U. Mass. X-band radar. From Bluestein et
al. (2007b).

FIG. 4: (a) Radial profile of GBVTD- (ground-based velocity track
display) analyzed azimuthally averaged azimuthal velocity (m s™),
radial velocity (m s™), vorticity X 10 (s™), divergence X 100 (s™),
circulation X 10° (m*™"), and reflectivity (dBZ,) for a tornado
during its mature stage. Positive radial velocity indicates flow away
from the tornado vortex center. (b) Radial profile of GBVTD-
analyzed azimuthally averaged azimuthal velocity (solid curve), the
azimuthal velocity profile of a Burgers — Rott vortex (BRV) with
the same maximum velocity and RMW (radius of maximum wind)
(solid curve with triangle markings). The vorticity assoicted with
each of the profiles (multiplied by a factor of 10 for clarity) is
indicated by broken lines with corresponding symbols. Based on
data from the U. Mass. W-band radar. (from Tanamachi et al. 2007)
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